990 resultados para 1492-1547
Resumo:
Cefepime is a broad-spectrum cephalosporin indicated for in-hospital treatment of severe infections. Acute neurotoxicity, an increasingly recognized adverse effect of this drug in an overdose, predominantly affects patients with reduced renal function. Although dialytic approaches have been advocated to treat this condition, their role in this indication remains unclear. We report the case of an 88-year-old female patient with impaired renal function who developed life-threatening neurologic symptoms during cefepime therapy. She was treated with two intermittent 3-hour high-flux, high-efficiency hemodialysis sessions. Serial pre-, post-, and peridialytic (pre- and postfilter) serum cefepime concentrations were measured. Pharmacokinetic modeling showed that this dialytic strategy allowed for serum cefepime concentrations to return to the estimated nontoxic range 15 hours earlier than would have been the case without an intervention. The patient made a full clinical recovery over the next 48 hours. We conclude that at least 1 session of intermittent hemodialysis may shorten the time to return to the nontoxic range in severe clinically patent intoxication. It should be considered early in its clinical course pending chemical confirmation, even in frail elderly patients. Careful dosage adjustment and a high index of suspicion are essential in this population.
Resumo:
Background Single procedure success rates of pulmonary vein isolation (PVI) in patients with paroxysmal atrial fibrillation (PAF) are still unsatisfactory. In patients with persistent atrial fibrillation (AF), ablation of complex fractionated atrial electrograms (CFAEs) after PVI results in improved outcomes. Objective We aimed to investigate if PAF-patients with intraprocedurally sustained AF after PVI might benefit from additional CFAE ablation. Methods A total of 1134 consecutive patients underwent a first catheter ablation procedure of PAF between June 2008 and December 2012. In most patients, AF was either not inducible or terminated during PVI. In 68 patients (6%), AF sustained after successful PVI. These patients were randomized to either cardioversion (PVI-alone group; n = 33) or additional CFAE ablation (PVI+CFAE group; n = 35) and followed up every 1–3 months and serial Holter recordings were also obtained. The primary end point was the recurrence of AF/atrial tachycardia (AT) after a blanking period of 3 months. Results Procedure duration (127 ± 6 minutes vs 174 ± 10 minutes), radiofrequency application time (44 ± 3 minutes vs 74 ± 5 minutes), and fluoroscopy time (26 ± 2 minutes vs 41 ± 3 minutes) were longer in the PVI+CFAE group (all P < .001). In 30 of 35 patients (86%) in the PVI+CFAE group, ablation terminated AF. There was no significant group difference with respect to freedom from AF/AT (22 of 33 [67%] vs 22 of 35 [63%]; P = .66). Subsequently, 10 of 11 patients in the PVI-alone group (91%) and 11 of 13 patients in PVI+CFAE group (85%) underwent repeat ablation (P = 1.00). Overall, 29 of 33 [88%] vs 30 of 35 [86%] patients (P = 1.00) were free from AF/AT after 1.4 ± 0.1 vs 1.4 ± 0.2 (P = .87) procedures. Conclusion Patients with sustained AF after PVI in a PAF cohort are rare. Regarding AF/AT recurrence, these patients did not benefit from further CFAE ablation compared to PVI alone, but are exposed to longer procedure duration, fluoroscopy time, and radiofrequency application time.
Resumo:
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Resumo:
Conventional risk assessments for crop protection chemicals compare the potential for causing toxicity (hazard identification) to anticipated exposure. New regulatory approaches have been proposed that would exclude exposure assessment and just focus on hazard identification based on endocrine disruption. This review comprises a critical analysis of hazard, focusing on the relative sensitivity of endocrine and non-endocrine endpoints, using a class of crop protection chemicals, the azole fungicides. These were selected because they are widely used on important crops (e.g. grains) and thereby can contact target and non-target plants and enter the food chain of humans and wildlife. Inhibition of lanosterol 14α-demethylase (CYP51) mediates the antifungal effect. Inhibition of other CYPs, such as aromatase (CYP19), can lead to numerous toxicological effects, which are also evident from high dose human exposures to therapeutic azoles. Because of its widespread use and substantial database, epoxiconazole was selected as a representative azole fungicide. Our critical analysis concluded that anticipated human exposure to epoxiconazole would yield a margin of safety of at least three orders of magnitude for reproductive effects observed in laboratory rodent studies that are postulated to be endocrine-driven (i.e. fetal resorptions). The most sensitive ecological species is the aquatic plant Lemna (duckweed), for which the margin of safety is less protective than for human health. For humans and wildlife, endocrine disruption is not the most sensitive endpoint. It is concluded that conventional risk assessment, considering anticipated exposure levels, will be protective of both human and ecological health. Although the toxic mechanisms of other azole compounds may be similar, large differences in potency will require a case-by-case risk assessment.
Resumo:
Teilw. in hebr. Schrift. - Enth. nicht: Grammaticae compendium
Resumo:
Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.
Resumo:
BACKGROUND: Contemporary pacemakers (PMs) are powered by primary batteries with a limited energy-storing capacity. PM replacements because of battery depletion are common and unpleasant and bear the risk of complications. Batteryless PMs that harvest energy inside the body may overcome these limitations. OBJECTIVE: The goal of this study was to develop a batteryless PM powered by a solar module that converts transcutaneous light into electrical energy. METHODS: Ex vivo measurements were performed with solar modules placed under pig skin flaps exposed to different irradiation scenarios (direct sunlight, shade outdoors, and indoors). Subsequently, 2 sunlight-powered PMs featuring a 4.6-cm2 solar module were implanted in vivo in a pig. One prototype, equipped with an energy buffer, was run in darkness for several weeks to simulate a worst-case scenario. RESULTS: Ex vivo, median output power of the solar module was 1963 μW/cm2 (interquartile range [IQR] 1940-2107 μW/cm2) under direct sunlight exposure outdoors, 206 μW/cm2 (IQR 194-233 μW/cm2) in shade outdoors, and 4 μW/cm2 (IQR 3.6-4.3 μW/cm2) indoors (current PMs use approximately 10-20 μW). Median skin flap thickness was 4.8 mm. In vivo, prolonged SOO pacing was performed even with short irradiation periods. Our PM was able to pace continuously at a rate of 125 bpm (3.7 V at 0.6 ms) for 1½ months in darkness. CONCLUSION: Tomorrow's PMs might be batteryless and powered by sunlight. Because of the good skin penetrance of infrared light, a significant amount of energy can be harvested by a subcutaneous solar module even indoors. The use of an energy buffer allows periods of darkness to be overcome.
Resumo:
Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations (35% decrease in r and 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and low land-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant–plant and plant–primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions. Read More: http://www.esajournals.org/doi/10.1890/14-1307.1
Resumo:
This article gives a review of the classification, diagnostic procedures and treatment of idiopathic inflammatory myopathies from a neurological point of view. The myositis syndromes can be subdivided into four groups, polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM) and necrotizing myopathy (NM), which substantially differ clinically and pathophysiologically. Myositis may also occur in association with cancer or autoimmune systemic diseases (overlap syndrome). Diagnosis of inflammatory myopathies is based on clinical symptoms, determination of creatine phosphokinase and acute phase parameters in blood (e.g. C-reactive protein and erythrocyte sedimentation rate), electromyography results and findings of magnetic resonance imaging (MRI) in muscle. A muscle biopsy is mandatory to confirm the diagnosis. High quality randomized controlled trials of treatment regimens for inflammatory myopathies are sparse; however, empirical experience indicates a clear effectiveness of immunosuppressive treatment of PM, DM and NM.
Resumo:
BACKGROUND We observed a case of conductor externalization in a Biotronik Linox lead. OBJECTIVE To investigate lead performance of the Linox and identical Sorin Vigila lead and prevalence of conductor externalization. METHODS We compared lead performance of all Linox and Vigila leads implanted at our center (BL group; n=93) with all Boston Scientific Endotak Reliance leads (ER group; n=190) and Medtronic Sprint Quattro leads (SQ group; n=202) implanted during the same period. We screened all BL group patients for conductor externalization. RESULTS We identified 8 cases of lead failures in the BL group (index case of conductor externalization; 6 cases of non-physiological high rate sensing; one case of high voltage conductor fracture). Prospective, fluoroscopic screening of 98% of all active BL group cases revealed one additional case of conductor externalization. Median follow-up was 41, 27 and 29 months for the BL group, ER group and SQ group, respectively, lead survival 94.9%, 99.2% and 100% at 3 years, and 88%, 97.5% and 100% at 5 years (p=0.038 for BL group vs. ER group, and p=0.007 for BL group vs. SQ group by the log-rank test). Younger age at implant was an independent predictor for lead failure in the BL group (adjusted HR 0.85 [95% confidence interval 0.77-0.94]; p=0.001). CONCLUSION At our center, survival of the Linox lead is 88% at five years and significantly worse than its comparators. Conductor externalization is present in a minority of failed Linox leads. Younger age at implant is an independent predictor of Linox lead failure.
Resumo:
BACKGROUND Inferolateral early repolarization (ER) is highly prevalent and is associated with idiopathic ventricular fibrillation (VF). OBJECTIVE The purpose of this study was to evaluate the potential role of T-wave parameters to differentiate between malignant and benign ER. METHODS We compared the ECGs of patients with ER and VF (n = 92) with control subjects with asymptomatic ER (n = 247). We assessed J-wave amplitude, QTc interval, T-wave/R-wave (T/R) ratio in leads II and V5, and presence of low-amplitude T waves (T-wave amplitude <0.1 mV and <10% of R-wave amplitude in lead I, II, or V4-V6). RESULTS Compared to controls, the VF group had longer QTc intervals (388 ms vs 377 ms, P = .001), higher J-wave amplitudes (0.23 mV vs 0.17 mV, P <.001), higher prevalence of low-amplitude T waves (29% vs 3%, P <.001), and lower T/R ratio (0.18 vs 0.30, P <.001). Logistic regression analysis demonstrated that QTc interval (odds ratio [OR] per 10 ms: 1.15, 95% confidence interval [CI} 1.02-1.30), maximal J-wave amplitude (OR per 0.1 mV: 1.68, 95% CI 1.23-2.31), lower T/R ratio (OR per 0.1 unit: 0.62, 95% CI 0.47-0.81), presence of low-amplitude T waves (OR 3.53, 95% CI 1.26-9.88). and presence of J waves in the inferior leads (OR 2.58, 95% CI 1.18-5.65) were associated with malignant ER. CONCLUSION Patients with malignant ER have a higher prevalence of low-amplitude T waves, lower T/R ratio (lead II or V5), and longer QTc interval. The combination of these parameters with J-wave amplitude and distribution of J waves may allow for improved identification of malignant ER.