990 resultados para 149-898A
Resumo:
With complete sets of chromosome-specific painting probes derived from flow-sorted chromosomes of human and grey squirrel (Sciurus carolinensis), the whole genome homologies between human and representatives of tree squirrels (Sciurus carolinensis, Callosciurus erythraeus), flying squirrels (Petaurista albiventer) and chipmunks (Tamias sibiricus) have been defined by cross-species chromosome painting. The results show that, unlike the highly rearranged karyotypes of mouse and rat, the karyotypes of squirrels are highly conserved. Two methods have been used to reconstruct the genome phylogeny of squirrels with the laboratory rabbit (Oryctolagus cuniculus) as the out-group: ( 1) phylogenetic analysis by parsimony using chromosomal characters identified by comparative cytogenetic approaches; ( 2) mapping the genome rearrangements onto recently published sequence-based molecular trees. Our chromosome painting results, in combination with molecular data, show that flying squirrels are phylogenetically close to New World tree squirrels. Chromosome painting and G-banding comparisons place chipmunks ( Tamias sibiricus), with a derived karyotype, outside the clade comprising tree and flying squirrels. The superorder Glires (order Rodentia + order Lagomorpha) is firmly supported by two conserved syntenic associations between human chromosomes 1 and 10p homologues, and between 9 and 11 homologues.
Resumo:
We have made a complete set of painting probes for the domestic horse by degenerate oligonucleotide-primed PCR amplification of flow-sorted horse chromosomes. The horse probes, together with a full set of those available for human, were hybridized onto metaphase chromosomes of human, horse and mule. Based on the hybridization results, we have generated genome-wide comparative chromosome maps involving the domestic horse, donkey and human. These maps define the overall distribution and boundaries of evolutionarily conserved chromosomal segments in the three genomes. Our results shed further light on the karyotypic relationships among these species and, in particular, the chromosomal rearrangements that underlie hybrid sterility and the occasional fertility of mules.
Resumo:
运用蛋白电泳技术, 对云南普通马和矮型马群体的遗传多样性及其群众间遗传分化关系作了分析研究。44个遗传座位中有10个座位检测到多态性, 通过多态百分比、平均杂合度、平均等位基因的计算表明, 云南普通马和矮型马的遗传多样性较为丰富, 小区域内的群体存在着多样的遗传基因, 两种马在遗传上有一定差异。根据分子钟假说和相应的公式, 推算两者的分岐时间约为18.5万年。图1表2参12(金显谟)
Resumo:
采用蛋白电泳技术对云南的3种姬鼠的蛋白多态性进行了分析, 共检测遗传座位27个, 发现21个座位存在多态性。根据蛋白多态性的数据对研究对象进行了遗传分化关系的探讨, 并得到了一棵无根系统树。
Resumo:
Cross-species chromosome painting with probes derived from flow-sorted dog and human chromosomes was used to construct a high-resolution comparative map for the pig. In total 98 conserved autosomal segments between pig and dog were detected by probes specific for the 38 autosomes and X Chromosome of the dog. Further integration of our results with the published human-dog and cat-dog comparative maps, and with data from comparative gene mapping, increases the resolution of the current pig-human comparative map. It allows for the conserved syntenies detected in the pig, human, and cat to be aligned against the putative ancestral karyotype of eutherian mammals and for the history of karyotype evolution of the pig lineage to be reconstructed. Fifteen fusions, 17 fissions, and 23 inversions are required to convert the ancestral mammalian karyotype into the extant karyotype of the pig.
Resumo:
采用水平式淀粉凝胶电泳技术,对云南盐津乌鸡34只个体共计34个基因座位的血液蛋白及同工酶多态性进行研究,发现LAP、AKP-1、AKP-2、CKs-1、PEP-B 5个座位具有多态性,多态座位百分比和平均杂合度分别为P=0.1470,H=0.0586。对多态座位基因频率进行计算发现盐津乌鸡LAP~(B)、aKP-1、AKP-2、CEs-1~(A)、PEP-B~(A)频率较高。结果表明,云南盐津乌鸡遗传多样性程度较常见的外国鸡种高,且具有独特基因型,属选育程度低,选择潜力大的地方品种,具有较高的保种价值。
Resumo:
We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
采用非损伤性DNA基因分型技术(Noninvasive DNA genotyping),对我国珍稀灵长类动物黑冠长臂猿11个个体的线粒体DNA(mtDNA)控制区159bp的片段进行了序列分析。根据分子系统树,结合形态学方面的资料,提出对中国黑冠长臂猿新的分类观点,即现生的中国黑冠长臂猿应为3个种(H. concalor; H. leucogenys; H. hainanus),其中 H. concolor含3个亚种(H.c.concolor, H.c.jingdongensis, H.c.furvogaster)。同时,针对该类珍稀动物保护,提出将上述黑冠长臂猿的种和亚种作为不同的进化显著性单元(Evolutionarilly Sigificant Units, ESU)进行保护和遗传管理。
Resumo:
Cross-species painting (fluorescence in situ hybridization) with 23 human (Homo sapiens (HSA)) chromosome-specific painting probes (HSA 1-22 and the X) was used to delimit regions of homology on the chromosomes of the golden mole (Ghrysochloris asiaticus) and elephant-shrew (Elephantulus rupestris). A cladistic interpretation of our data provides evidence of two unique associations, HSA 1/19p and 5/21/3, that support Afrotheria. The recognition of HSA 5/3/21 expands on the 3/21 synteny originally designated as an ancestral state for all eutherians. We have identified one adjacent segment combination (HSA2/8p/4) that is supportive of Afroinsectiphillia (aardvark, golden mole, elephant-shrew). Two segmental combinations (HSA 10q/17 and HSA 3/20) unite the aardvark and elephant-shrews as sister taxa. The finding that segmental syntenies in evolutionarily distant taxa can improve phylogenetic resolution suggests that they may be useful for testing sequence-based phylogenies of the early eutherian mammals. They may even suggest clades that sequence trees are not recovering with any consistency and thus encourage the search for additional rare genomic changes among afrotheres.
Resumo:
采用蛋白电泳分析技术研究了来源于我国和越南的猕猴属5个种的蛋白多态性及其遗传分化关系。共分析遗传座位30个。在分析的19只恒河猴中,30个遗传座位有9个座位表现出多态性,多态座位百分比P=0.3,平均等位基因数A=1.4,平均杂合度H=0.1045。此结果表明,恒河猴的遗传多样性在蛋白质水平上是极为丰富的。另外,有10个座位在所分析的猕猴属的5个种中存在2个以上的等位基因,根据基因频率和遗传距离,采用PHYLIP3.5c软件包中的"CONTML"、"NEIGHBOR"和"FITCH",以每一物种作为分类单元,以小懒猴作为外群, 构建了系统树。所得到的3棵系统树均支持恒河猴和食蟹猴聚在一起,表明这两个物种的亲缘关系较为接近,属于一个种组。"ML"树和"FM"树的拓扑结构基本相同,支持将红面猴独立为一个种组,并显示同恒河猴和食蟹猴所聚的一支较为接近;熊猴和藏猴较为接近形成一个种组,聚在树的外部。“NJ”树则将红面猴和熊猴聚为一支,藏猴独立成一支聚在最外部。
Resumo:
Chromosomal homologies have been established between the Chinese muntjac (Muntiacus reevesi, MRE, 2n = 46) and five ovine species: wild goat (Capra aegagrus, CAE, 2n = 60), argall (Ovis ammon, OAM, 2n = 56), snow sheep (Ovis nivicola, ONI, 2n = 52), red goral (Naemorhedus cranbrooki, NCR, 2n = 56) and Sumatra serow (Capricornis sumatraensis, CSU, 2n = 48) by chromosome painting with a set of chromosome-specific probes of the Chinese muntjac. In total, twenty-two Chinese muntjac autosomal painting probes detected thirty-five homologous segments in the genome of each species. The chromosome X probe hybridized to the whole X chromosomes of all ovine species while the chromosome Y probe gave no signal. Our results demonstrate that almost all homologous segments defined by comparative painting show a high degree of conservation in G-banding patterns and that each speciation event is accompanied by specific chromosomal rearrangements. The combined analysis of our results and previous cytogenetic and molecular systematic results enables us to map the chromosomal rearrangements onto a phylogenetic tree, thus providing new insights into the karyotypic evolution of these species.
Resumo:
采用水平式淀粉胶蛋白电泳技术,对路南保种乳用圭山羊33个个体的46个遗传座位的血液蛋白及同工酶的多态性进行了研究。结果发现AKP、LAP、CES-I、ESD、ME和Pa6个座位具多态性,多态座位的基因AKP~(0)、LAP~(A)、CES-I~(1)、ME~(B)、ESD~(1)和Pa~(A)的基因频率较高;多态座位百分比P=0.1304,平均杂合度H=0.0501。在Tf座位,出现两种表型AA、AB,但多态性贫乏;LDH谱带中发现一种不同的类型。
Resumo:
Chromosome sorting by flow cytometry is the main source of chromosome-specific DNA for the production of painting probes. These probes have been used for cross-species in situ hybridization in the construction of comparative maps, in the study of karyotype evolution and phylogenetics, in delineating territories in interphase nuclei, and in the analysis of chromosome breakpoints. We review here the contributions that this technology has made to the analysis of primate genomes. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
采用微量DNA提取技术,从梅花鹿血、毛、鹿鞭、鹿茸、牛鞭、驴鞭中提取DNA,以线粒体DNA细胞色素b通用引物L14841和H15149扩增约307bpDNA片段, 扩增产物纯化后采用双脱氧链终止法测定其序列。结果证明:梅花鹿毛、血和鹿鞭的DNA序列完全一致; 而所谓的“鹿茸”则与其有较大的差异。用所测序列以简约法PAUP3.1.1 程序构建的分子系统树与传统分类系统相吻合。