991 resultados para 091200 MATERIALS ENGINEERING
Resumo:
Three independent studies have been reported on the free energy of formation of NiWO4. Results of these measurements are analyzed by the �third-law� method, using thermal functions for NiWO4 derived from both low and high temperature heat capacity measurements. Values for the standard molar enthalpy of formation of NiWO4 at 298·15 K obtained from �third-law� analysis are compared with direct calorimetric determinations. Only one set of free energy measurements is found to be compatible with calorimetric enthalpies of formation. The selected value for ?f H m 0 (NiWO4, cr, 298·15 K) is the average of the three calorimetric measurements, using both high temperature solution and combustion techniques, and the compatible free energy determination. A new set of evaluated data for NiWO4 is presented.
Resumo:
Anomalous X-ray scattering (AXS) has been applied to study the structure of amorphous platinum disulfide, Pt1-xS2, prepared by the precipitation process. The local atomic arrangement in amorphous Pt1-xS2 was determined by the least-squares variational method so as to reproduce the experimental differential interference function at the Pt L(III) absorption edge by the AXS method as well as the ordinary interference function by MoK alpha. The structural unit in amorphous Pt1-xS2 is found to be a PtS6 octahedron, similar to that in crystalline PtS2. These octahedra share both their corners and edges, while only edge-sharing linkages occur in crystalline PtS2.
Resumo:
The anomalous X-ray scattering (AXS) method using Cu and Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (CuI)(0.3)(Cu2O)(0.35)(MoO3)(0.35). The possible atomic arrangements in near-neighbor region of this glass were estimated by coupling the results with the least-squares analysis so as to reproduce two differential intensity profiles for Cu and Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be 6.1 at the distance of 0.187 nm. This implies that the MoO6 octahedral unit is a more probable structural entity in the glass rather than MoO4 tetrahedra which has been proposed based on infrared spectroscopy. The pre-peak shoulder observed at about 10 nm(-1) may be attributed to density fluctuation originating from the MoO6 octahedral units connected with the corner sharing linkage, in which the correlation length is about 0.8 nm. The value of the coordination number of I- around Cu+ is estimated as 4.3 at 0.261 nm, suggesting an arrangement similar to that in molten CuI.
Resumo:
The evolution of microstructure and texture during extrusion of pure magnesium and its single phase alloy AM30 has been studied experimentally as well as by crystal plasticity simulation. Microstructure and micro-texture were characterized by electron back scattered diffraction (EBSD), bulk-texture was measured using X-ray diffraction and deformation texture simulations were carried out using visco-plastic self consistent (VPSC) model. In spite of clear indications of the occurrence of dynamic recrystallization (DRX), simulations were able to reproduce the experimental textures successfully. This was attributed to the fact that the textures were c-type fibers with their axis of rotation parallel to the c-axis and DRX leads to simply rotate the texture around the c-axis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dissolution of barium ion from aqueous suspensions of commercial nano-sized barium titanate powders (BaTiO3) has been studied at various pH values, solids loading, different time intervals and different electrolyte concentrations. Zeta potential measurements at various pH values and Fourier transform infrared spectroscopy study were also carried out to know the surface behaviour. Dissolution of Ba2+ depends on the suspension pH and stirring time period. The iso-electric points were found at 3.4 and 12.2 for as-received BaTiO3 powder and 2.3 for the leached BaTiO3. The Ba2+-leached BaTiO3 suspension retards further leaching of Ba2+ ions at different pH values, which favours the achievement of stable suspension.
Resumo:
Polycrystalline Ti thin films are shown to gradually transform from face-centered cubic (fcc) to hexagonal close-packed structure (hcp) with increasing film thickness. Diffraction stress analysis revealed that the fcc phase is formed in a highly compressive hcp matrix (>= 2 GPa), the magnitude of which decreases with increasing film thickness. A correlation between stress and crystallographic texture vis-a-vis the fcc-hcp phase transformation has been established. The total free energy change of the system upon phase transformation calculated using the experimental results shows that the fcc-hcp transformation is theoretically possible in the investigated film thickness regime (144-720 nm) and the hcp structure is stable for films thicker than 720 nm, whereas the fcc structure can be stabilized in Ti films much thinner than 144 nm. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The present work is based on four static molds using nozzles of different port diameter, port angle, and immersion depth. It has been observed that the meniscus is wavy. The wave amplitude shows a parabolic variation with the nozzle exit velocity. The dimensionless amplitude is found to vary linearly with the Froude number. Vortex formation and bubble entrainment by the wave occurs at the meniscus beyond a critical flow rate, depending upon the nozzle configuration, immersion depth, and the mold aspect ratio.
Resumo:
Ferromagnetic resonance spectra of La1-xCaxMnO3 powders (0.1 less than or equal to x 0.9) have been investigated over a range of temperatures. The spectra could be fitted to a sum of two Lorentzians for all the compositions. The intense line with a nearly constant g shows a linear decrease in linewidth with increase in temperature, while the weaker line with a variable g shows a maximum in linewidth in the T-c region. The latter is also associated with a g(eff) which depends on the composition. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Expressions for various second-order derivatives of surface tension with respect to composition at infinite dilution in terms of the interaction parameters of the surface and those of the bulk phases of dilute ternary melts have been presented. A method of deducing the parameters, which consists of repeated differentiation of Butler's equations with subsequent application of the appropriate boundary conditions, has been developed. The present investigation calculates the surface tension and adsorption functions of the Fe-S-O melts at 1873 and 1923 K using the modified form of Butler's equations and the derived values for the surface interaction parameters of the system. The calculated values are found to be in good agreement with those of the experimental data of the system. The present analysis indicates that the energetics of the surface phase are considerably different from those of the bulk phase. The present research investigates a critical compositional range beyond which the surface tension increases with temperature. The observed increase in adsorption of sulfur with consequent desorption of oxygen as a function of temperature above the critical compositional range has been ascribed to the increase of activity ratios of oxygen to sulfur in the surface relative to those in the bulk phase of the system.
Resumo:
This article deals with the effect of 0.25-1.5 wt pct mischmetal (MM) addition on the mechanical properties, microstructure, electrical conductivity, and fracture behavior of cast Al-7Si-0.3Mg (LM 25/356) alloy. Modification of eutectic silicon by MM is compared with strontium modification in terms of microstructure, mechanical properties, and fading behavior. Loss of magnesium encountered on holding the molten alloy and its resultant effect on mechanical properties of alloys modified with MM and Sr are compared with those in the unmodified alloy.
Resumo:
The partial thermodynamic functions of the solvent component of a ternary system have been deduced in terms of the interaction parameters by integration of several series which emerge from the Maclaurin infinite series based on the integral property of the system and subjected to appropriate boundary conditions. The series integration shows that the resulting partial functions are suitable for interpreting the thermodynamic properties of the system and are independent of compositional paths. In the present analysis, the higher order terms of these series are found to make insignificant contributions.