998 resultados para óxidos de hierro
Resumo:
El trabajo demuestra que las concentraciones de óxido de azufre y monóxido de carbono han disminuido como consecuencia de los incrementos de la calidad de los combustibles y de las normas de emisión de los vehículos desarrollados durante el periodo de estudio. Sin embargo, las concentraciones de los óxidos de nitrógeno, partículas materiales y ozono se han mantenido constantes pese a la mejora de las emisiones por vehículo, como consecuencia del aumento de la movilidad. Además, las concentraciones de los óxidos de nitrógeno y partículas materiales se encuentran por encima de los estándares de emisión permitidos.
Resumo:
The effects of conversion treatments, depending on ecological factors and silvicultural parameters (thinning intensity, thinning type and rotation, among others) have been studied during the last fifteen years in an experimental trial in Central Spain. The general climate is continental Mediterranean; soils are low depth and limy; vegetation is an homogeneous dense coppices of Quercus ilex with isolated Pinus nigra trees. The experimental design (three locations) includes different thinning intensities (from 0 to 100% of extracted basal area). Inventories have been carried out in 1994 and 2010; thinning treatments were done in 1995 and 2011. Analysis of the effects of the conversion treatment show the increment of diameter and height growth rates, the canopy recovery and the stand resprouting, finding differences in these effects between thinning treatments. Besides the induced changes at holm oak stand, the application of conversion treatment clearly changed the woodland dynamics. Fifteen years after the thinnings, floristic composition varied and an abundant pine regeneration was installed in the woodland. In this work we describe the changes between inventories in tree species composition and diameter distribution, specially in the case of black pine. The conversion treatment caused changes in forest dynamics in the short term, increasing biodiversity and diversifying the forest structure. The fast installation of Pinus regeneration suggests the potential of the zone for the establishment of multipurpose mixed Quercus-Pinus stands in wide areas where Quercus species were favoured by human populations for firewood production. Conversion treatment of coppices, with the creation of mixed stands, constitutes a good management alternative for extensive areas and an interesting technique to adaptation to global change.
Resumo:
En esta contribución se presenta un estudio teórico de diferentes reacciones químicas entre óxidos de iodo y agua que pueden contribuir a la formación de partículas en la atmósfera. Mediante el uso de cálculos quimicocuánticos ab initio con tratamiento de la correlación electrónica se han obtenido propiedades termodinámicas para caracterizar esas reacciones
Resumo:
Low optical degradation in GaInAsN(Sb)/GaAs quantum dots (QDs) p–i–n structures emitting up to 1.55 μm is presented in this paper. We obtain emission at different energies by means of varying N content from 1 to 4%. The samples show a low photoluminescence (PL) intensity degradation of only 1 order of magnitude when they are compared with pure InGaAs QD structures, even for an emission wavelength as large as 1.55 μm. The optimization studies of these structures for emission at 1.55 μm are reported in this work. High surface density and homogeneity in the QD layers are achieved for 50% In content by rapid decrease in the growth temperature after the formation of the nanostructures. Besides, the effect of N and Sb incorporation in the redshift and PL intensity of the samples is studied by post-growth rapid thermal annealing treatments. As a general conclusion, we observe that the addition of Sb to QD with low N mole fraction is more efficient to reach 1.55 μm and high PL intensity than using high N incorporation in the QD. Also, the growth temperature is determined to be an important parameter to obtain good emission characteristics. Finally, we report room temperature PL emission of InGaAsN(Sb)/GaAs at 1.4 μm.
Resumo:
High quality 1 μm thick a-plane MgxZn1−xO layers were produced by molecular beam epitaxy with Mg contents higher than 50%. Resonant Rutherford backscattering spectrometry combined with ion channeling revealed a uniform growth in both composition and atomic order. The lattice-site location of Mg, Zn and O elements was determined independently, proving the substitutional behaviour of Mg in Zn-sites of the wurtzite lattice. X-Ray diffraction pole figure analysis also confirms the absence of phase separation. Optical properties at such high Mg contents were studied in Schottky photodiodes.
Resumo:
In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found
Resumo:
The development of high efficiency laser diodes (LD) and light emitting diodes (LED) covering the 1.0 to 1.55 μm region of the spectra using GaAs heteroepitaxy has been long pursued. Due to the lack of materials that can be grown lattice-macthed to GaAs with bandgaps in the 1.0 to 1.55 μm region, quantum wells (QW) or quantum dots (QD) need be used. The most successful approach with QWs has been to use InGaAs, but one needs to add another element, such as N, to be able to reach 1.3/1.5μm. Even though LDs have been successfully demonstrated with the QW approach, using N leads to problems with compositional homogeneity across the wafer, and limited efficiency due to strong non-radiative recombination. The alternative approach of using InAs QDs is an attractive option, but once again, to reach the longest wavelengths one needs very large QDs and control over the size distribution and band alignment. In this work we demonstrate InAs/GaAsSb QDLEDs with high efficiencies, emitting from 1.1 to 1.52 μm, and we analyze the band alignment and carrier loss mechanisms that result from the presence of Sb in the capping layer.
Resumo:
Self-organized InGaAs QDs are intensively studied for optoelectronic applications. Several approaches are in study to reach the emission wavelengths needed for these applications. The use of antimony (Sb) in either the capping layer or into the dots is one example. However, these studies are normally focused on buried QD (BQD) where there are still different controversial theories concerning the role of Sb. Ones suggest that Sb incorporates into the dot [1], while others support the hypothesis that the Sb occupies positions surrounding the dot [2] thus helping to keep their shape during the capping growth.
Resumo:
Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and electrical properties [2, 3]. However, surface quantum dots (SQDs) are less affected by stress, although their optical and electrical characteristics have a strong dependence on surface fluctuation. Thus, they can play an important role in sensor applications
Resumo:
The optical and structural properties of InAs/GaAs quantum dots (QD) are strongly modified through the use of a thin (~ 5 nm) GaAsSb(N) capping layer. In the case of GaAsSb-capped QDs, cross-sectional scanning tunnelling microscopy measurements show that the QD height can be controllably tuned through the Sb content up to ~ 14 % Sb. The increased QD height (together with the reduced strain) gives rise to a strong red shift and a large enhancement of the photoluminescence (PL) characteristics. This is due to improved carrier confinement and reduced sensitivity of the excitonic bandgap to QD size fluctuations within the ensemble. Moreover, the PL degradation with temperature is strongly reduced in the presence of Sb. Despite this, emission in the 1.5 !lm region with these structures is only achieved for high Sb contents and a type-II band alignment that degrades the PL. Adding small amounts of N to the GaAsSb capping layer allows to progressively reduce the QD-barrier conduction band offset. This different strategy to red shift the PL allows reaching 1.5 !lm with moderate Sb contents, keeping therefore a type-I alignment. Nevertheless, the PL emission is progressively degraded when the N content in the capping layer is increased
Resumo:
Quantum dot infrared photodetectors (QDIPs) are very attractive for infrared imaging applications due to its promising features such as high temperature operation, normal incidence response and low dark current [1]. However, the key issue is to obtain a high quality active region which requires a structural optimization of the nanostructures. With using GaAsSb capping layer, the optical properties, such as the PL intensity and its full width at half maximum (FWHM), of InAs QDs have been improved in the range between 1.15 and 1.5 m, because of the reduction of the compressive strain in QDs and the increment of QD height [2]. In this work, we have demonstrated strong and narrow intraband photoresponse spectra from GaAsSb-capped InAs-based QDIPs
Resumo:
Quantum dot infrared photodetectors (QDIPs) are very attractive for many applications such as infrared imaging, remote sensing and gas sensing, thanks to its promising features such as high temperature operation, normal incidence response and low dark current [1]. However, the key issue is to obtain a high-quality active region which requires an optimization of the nanostructure. By using GaAsSb capping layer, InAs QDs have improved their optical emission in the range between 1.15 and 1.3 m (at Sb composition of 14 %), due to a reduction of a compressive strain in QD and an increment of a QD height [2]. In this work, we have demonstrated strong and narrow intraband photoresponses at ~ 5 m from GaAsSb-capped InAs/GaAs QDIPs under normal light-incidence.
Resumo:
ZnO single nanowire photodetectors have been measured in different ambient conditions in order to understand and control adsorption processes on the surface. A decrease in the conductivity has been observed as a function of time when the nanowires are exposed to air, due to adsorbed O2/H2O species at the nanowire surface. In order to have a device with stable characteristics in time, thermal desorption has been used to recover the original conductivity followed by PMMA coating of the exposed nanowire surface.
Resumo:
Diluted nitride self-assembled In(Ga)AsN quantum dots (QDs) grown on GaAs substrates are potential candidates to emit in the windows of maximum transmittance for optical fibres (1.3-1.55 μm). In this paper, we analyse the effect of nitrogen addition on the indium desorption occurring during the capping process of InxGa1−xAs QDs (x = l and 0.7). The samples have been grown by molecular beam epitaxy and studied through transmission electron microscopy (TEM) and photoluminescence techniques. The composition distribution inside the dots was determined by statistical moiré analysis and measured by energy dispersive X-ray spectroscopy. First, the addition of nitrogen in In(Ga)As QDs gave rise to a strong redshift in the emission peak, together with a large loss of intensity and monochromaticity. Moreover, these samples showed changes in the QDs morphology as well as an increase in the density of defects. The statistical compositional analysis displayed a normal distribution in InAs QDs with an average In content of 0.7. Nevertheless, the addition of Ga and/or N leads to a bimodal distribution of the Indium content with two separated QD populations. We suggest that the nitrogen incorporation enhances the indium fixation inside the QDs where the indium/gallium ratio plays an important role in this process. The strong redshift observed in the PL should be explained not only by the N incorporation but also by the higher In content inside the QDs
Resumo:
The accuracy of Tomás López´s historical cartography of the Canary Islands included in the “Atlas Particular” of the Kingdoms of Spain, Portugal and Adjacent Islands” is analyzed. For this purpose, we propose a methodology based on Geographic Information Systems (GIS), a comparison of digitized historical cartography population centres with current ones. This study shows that the lineal error value is small for the smaller islands: Lanzarote, El Hierro, La Palma and La Gomera. In the large islands of Tenerife, Fuerteventura and Gran Canaria, the error is smaller in central zones but increases towards the coast. This indicates that Tomás López began his cartography starting from central island zones, accumulating errors due to lack of geodetic references as he moved toward the coast.