981 resultados para >400 µm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developments of aluminum alloys that can retain strength at and above 250 degrees C present a significant challenge. In this paper we report an ultrafine scale Al-Fe-Ni eutectic alloy with less than 3.5 aa transition metals that exhibits room temperature ultimate tensile strength of similar to 400 MPa with a tensile ductility of 6-8%. The yield stress under compression at 300 degrees C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al-Al3Ni rod eutectic with spacing of similar to 90 nm enveloped by a lamellar eutectic of Al-Al9FeNi (similar to 140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al-Al3Ni eutectic colony indicates accommodation of plasticity in alpha-Al with dislocation accumulation at the alpha-Al/Al3Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fretting is of a serious concern in many industrial components, specifically, in nuclear industry for the safe and reliable operation of various component and/or system. Under fretting condition small amplitude oscillations induce surface degradation in the form of surface cracks and/or surface wear. Comprehensive experimental studies have been carried out simulating different fretting regimes under ambient and vacuum (10(-9) MPa) conditions and, temperature up to 400 degrees C. Studies have been carried out with stainless steel spheres on stainless steel flats, and stainless steel spheres against chromium carbide, with 25% nickel chrome binder coatings. Mechanical responses are correlated with the damage observed. It has been observed that adhesion plays a vital role in material degradation process, and its effectiveness depends on mechanical variables such as normal load, interfacial tangential displacement, characteristics of the contacting bodies and most importantly on the environment conditions. Material degradation mechanism for ductile materials involved severe plastic deformation, which results in the initiation or nucleation of cracks. Ratcheting has been observed as the governing damage mode for crack nucleation under cyclic tangential loading condition. Further, propagation of the cracks has been observed under fatigue and their orientation has been observed to be governed by the contact conditions prevailing at the contact interface. Coated surfaces show damage in the form of brittle fracture and spalling of the coatings. Existence of stick slip has been observed under high normal load and low displacement amplitude. It has also been observed that adhesion at the contact interface and instantaneous cohesive strength of the contacting bodies dictates the occurrence of material transfer. The paper discusses the mechanics and mechanisms involved in fretting damage under controlled environment conditions. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The similar to 700-km-long ``central seismic gap'' is the most prominent segment of the Himalayan front not to have ruptured in a major earthquake during the last 200-500 yr. This prolonged seismic quiescence has led to the proposition that this region, with a population >10 million, is overdue for a great earthquake. Despite the region's recognized seismic risk, the geometry of faults likely to host large earthquakes remains poorly understood. Here, we place new constraints on the spatial distribution of rock uplift within the western similar to 400 km of the central seismic gap using topographic and river profile analyses together with basinwide erosion rate estimates from cosmogenic Be-10. The data sets show a distinctive physiographic transition at the base of the high Himalaya in the state of Uttarakhand, India, characterized by abrupt strike-normal increases in channel steepness and a tenfold increase in erosion rates. When combined with previously published geophysical imaging and seismicity data sets, we interpret the observed spatial distribution of erosion rates and channel steepness to reflect the landscape response to spatially variable rock uplift due to a structurally coherent ramp-flat system of the Main Himalayan Thrust. Although it remains unresolved whether the kinematics of the Main Himalayan Thrust ramp involve an emergent fault or duplex, the landscape and erosion rate patterns suggest that the decollement beneath the state of Uttarakhand provides a sufficiently large and coherent fault segment capable of hosting a great earthquake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate in here a powerful scalable technology to synthesize continuously high quality CdSe quantum dots (QDs) in supercritical hexane. Using a low cost, highly thermally stable Cd-precursor, cadmium deoxycholate, the continuous synthesis is performed in 400 mu m ID stainless steel capillaries resulting in CdSe QDs having sharp full-width-at-half-maxima (23 nm) and high photoluminescence quantum yields (45-55%). Transmission electron microscopy images show narrow particles sizes distribution (sigma <= 5%) with well-defined crystal lattices. Using two different synthesis temperatures (250 degrees C and 310 degrees C), it was possible to obtain zinc blende and wurtzite crystal structures of CdSe QDs, respectively. This synthetic approach allows achieving substantial production rates up to 200 mg of QDs per hour depending on the targeted size, and could be easily scaled to gram per hour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the Ramsey separated oscillatory fields technique in a 400 degrees C thermal beam of ytterbium (Yb) atoms to measure the Larmor precession frequency (and hence the magnetic field) with high precision. For the experiment, we use the strongly allowed S-1(0) P-1(1) transition at 399 nm, and choose the odd isotope Yb-171 with nuclear spin I = 1/2, so that the ground state has only two magnetic sublevels m(F) = +/- 1/2. With a magnetic field of 22.2 G and a separation of about 400 mm between the oscillatory fields, the central Ramsey fringe is at 16.64 kHz and has a width of 350 Hz. The technique can be readily adapted to a cold atomic beam, which is expected to give more than an order-of-magnitude improvement in precision. The signal-to-noise ratio is comparable to other techniques of magnetometry; therefore it should be useful for all kinds of precision measurements such as searching for a permanent electric dipole moment in atoms.