967 resultados para wood biodegradation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration ((V) under bar (flask)/V(medium) ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y(P/S); cell yield factor, Y(X/S); and ethanol volumetric productivity, Q(P)) was investigated through a 2(2) full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y(P/S) = 0.37 g/g and Q(P) = 0.39 g/l. h) were found when the lowest aeration (2.5 V(flask)/V(medium) ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane bagasse was pretreated with diluted sulfuric acid to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH). Experiments were conducted in laboratory and semi-pilot reactors to optimize the xylose recovery and to reduce the generation of sugar degradation products, as furfural and 5-hydroxy-methylfurfural (HMF). The hydrolysis scale-up procedure was based on the H-Factor, that combines temperature and residence time and employs the Arrhenius equation to model the sulfuric acid concentration (100 mg(acid)/g(dm)) and activation energy (109 kJ/mol). This procedure allowed the mathematical estimation of the results through simulation of the conditions prevailing in the reactors with different designs. The SBHH obtained from different reactors but under the same H-Factor of 5.45 +/- 0.15 reached similar xylose yield (approximately 74%) and low concentration of sugar degradation products, as furfural (0.082 g/L) and HMF (0.0071 g/L). Also, the highest lignin degradation products (phenolic compounds) were rho-coumarilic acid (0.15 g/L) followed by ferulic acid (0.12 g/L) and gallic acid (0.035 g/L). The highest concentration of ions referred to S (3433.6 mg/L), Fe (554.4 mg/L), K (103.9 mg/L), The H-Factor could be used without dramatically altering the xylose and HMF/furfural levels. Therefore, we could assume that H-Factor was directly useful in the scale-up of the hemicellulosic hydrolysate production. (C) 2009 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The combined effects of vanillin and syringaldehyde on xylitol production by Candida guilliermondii using response surface methodology (RSM) have been studied. A 2(2) full-factorial central composite design was employed for experimental design and analysis of the results. RESULTS: Maximum xylitol productivities (Q(p) = 0.74 g L(-1) h(-1)) and yields (Y(P/S) = 0.81 g g(-1)) can be attained by adding only vanillin at 2.0 g L(-1) to the fermentation medium. These data were closely correlated with the experimental results obtained (0.69 +/- 0.04 g L(-1) h(-1) and 0.77 +/- 0.01 g g(-1)) indicating a good agreement with the predicted value. C. guilliermondii was able to convert vanillin completely after 24 h of fermentation with 94% yield of vanillyl alcohol. CONCLUSIONS: The bioconversion of xylose into xylitol by C. guilliermondii is strongly dependent on the combination of aldehydes and phenolics in the fermentation medium. Vanillin is a source of phenolic compound able to improve xylitol production by yeast. The conversion of vanillin to alcohol vanilyl reveals the potential of this yeast for medium detoxification. (C) 2009 Society of Chemical Industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, it was evaluated how two different culture conditions for the biotreatment of Eucalyptus grandis by Ceriporiopsis subvermispora affect a subsequent high-yield kraft pulping process. Under the varied culture conditions investigated, different extracellular enzyme activities were observed. Manganese-peroxidase (MnP) secretion was 3.7 times higher in cultures supplemented with glucose plus corn-steep liquor (glucose/CSL) as compared to non-supplemented (NS) cultures. The biotreated samples underwent diverse levels of wood component degradation as losses of weight and lignin were increased in glucose/CSL cultures. Mass balances for lignin removal during kraft pulping showed that delignification was facilitated when both biotreated wood samples were cooked. Delignification efficiency did not correlate positively with MnP levels in the cultures. On the other hand, biopulps from NS and glucose/CSL cultures saved 27% and 38% beating time to achieve 288 Schopper-Riegler freeness during refining, respectively. Biopulps disposed of decreased tensile and tear resistances, thus easier refining of the biokraft pulps seems to be a consequence of less resistant fiber walls. Improved beatability of biopulps was tentatively related to short fibers and fines formation during refining. We suggest that to some extent polysaccharide depolymerization occurred during the biotreatment, which also resulted in diminished pulp yields in the case of glucose/CSL cultures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In developing countries such as Brazil, the wastes generated in the decanters and filters of water treatment plants are discharged directly into the same rivers and streams that supply water for treatment. Another environmental problem is the unregulated discard of wood wastes. The lumber and wood products industry generates large quantities of this waste, from logging to the manufacture of the end product. Brazil has few biomass plants and therefore only a minor part of these wastes are reused. This paper presents the results of the first study involving a novel scientific and technological approach to evaluate the possibility of combining these two types of wastes in the production of a light-weight composite for concrete. The concrete produced with cement:sand:composite:water mass ratios of 1:2.5:0.67:0.6 displayed an axial compressive strength of 11.1 MPa, a compressive and diametral tensile strength of 1.2 MPa, water absorption of 8.8%, and a specific mass of 1.847 kg/m(3). The mechanical properties obtained with this concrete render it suitable for application in non-structural elements. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to verify the possibility to correlating specific gravity and wood hardness parallel and perpendicular to the grain. The purpose is to offer one more tool to help in the decision about wood species choice for use in floors and sleepers. To reach this intent, we considered the results of standard tests (NBR 7190:1997, Timber Structures Design, Annex B, Brazilian Association of Technical Standards) to determine hardness parallel and normal to the grain in fourteen tropical high density wood species (over 850 kg/m(3), at 12% moisture content). For each species twelve determinations were made, based on the material obtained at Sao Carlos and its regional wood market. Statistical analysis led to some expressions to describe the cited properties relationships, with a determination coefficient about 0.8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glued- laminated lumber (glulam) technique is an efficient process for the rational use of wood. Fiber-reinforced polymer (FRPs) associated with glulam beams provide significant improvements in strength and stiffness and alter the failure mode of these structural elements. In this context, this paper presents guidance for glulam beam production, an experimental analysis of glulam beams made of Pinus caribea var. hondurensis species without and with externally-bonded FRP and theoretical models to evaluate reinforced glulam beams (bending strength and stiffness). Concerning the bending strength of the beams, this paper aims only to analyze the limit state of ultimate strength in compression and tension. A specific disposal was used in order to avoid lateral buckling, once the tested beams have a higher ratio height-to-width. The results indicate the need of production control so as to guarantee a higher efficiency of the glulam beams. The FRP introduced in the tensile section of glulam beams resulted in improvements on their bending strength and stiffness due to the reinforcement thickness increase. During the beams testing, two failure stages were observed. The first was a tensile failure on the sheet positioned under the reinforcement layer, while the second occurred as a result of a preliminary compression yielding on the upper side of the lumber, followed by both a shear failure on the fiber-lumber interface and a tensile failure in wood. The model shows a good correlation between the experimental and estimated results.