1000 resultados para water buffaloes
Resumo:
In this study, we enlarged our previous investigation focusing on the biodiversity of chlamydiae and amoebae in a drinking water treatment plant, by the inclusion of two additional plants and by searching also for the presence of legionellae and mycobacteria. Autochthonous amoebae were recovered onto non-nutritive agar, identified by 18S rRNA gene sequencing, and screened for the presence of bacterial endosymbionts. Bacteria were also searched for by Acanthamoeba co-culture. From a total of 125 samples, we recovered 38 amoebae, among which six harboured endosymbionts (three chlamydiae and three legionellae). In addition, we recovered by amoebal co-culture 11 chlamydiae, 36 legionellae (no L. pneumophila), and 24 mycobacteria (all rapid-growers). Two plants presented a similar percentage of samples positive for chlamydiae (11%), mycobacteria (20%) and amoebae (27%), whereas in the third plant the number of recovered bacteria was almost twice higher. Each plant exhibited a relatively high specific microbiota. Amoebae were mainly represented by various Naegleria species, Acanthamoeba species and Hartmannella vermiformis. Parachlamydiaceae were the most abundant chlamydiae (8 strains in total), and in this study we recovered a new genus-level strain, along with new chlamydiae previously reported. Similarly, about 66% of the recovered legionellae and 47% of the isolated mycobacteria could represent new species. Our work highlighted a high species diversity among legionellae and mycobacteria, dominated by putative new species, and it confirmed the presence of chlamydiae in these artificial water systems.
Resumo:
A statewide study was performed to develop regional regression equations for estimating selected annual exceedance- probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedanceprobability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized leastsquares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized leastsquares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.
Resumo:
Crop seasonal sensitivity to water stress is concerned with how to control water stress levels to optimise yield or profitability. It deals with when we can reduce irrigation and impose moderate water deficits without affecting our target, and when we can apply water to avoid too much stress.
Resumo:
The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data. in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.
Resumo:
This report contains information about Iowa's public drinking water program for the calendar year 2014. Included in the report are descriptions of Iowa's systems, monitoring and reporting requirements of the systems, and violations incurred during the year. This report meets the federal Safe Drinking Water Act's requirement of an annual report on violations of national primary drinking water regulations by public water supply systems in Iowa.
Resumo:
Skin water loss of preterm infants, nursed naked in incubators under thermoneutral conditions, was assessed by a method based on the measurement of water vapor pressure gradient close to the skin surface. The corresponding skin evaporative heat loss was calculated using an energy equivalent of 0.58 kcal/g water vaporised. During the first 5 weeks of life, 128 sets of measurements were made on 56 infants whose gestational age ranged from 28 to 37 weeks. In the first week of life, infants of less than 30 weeks of gestation had substantially higher transepidermal water loss (TEWL) and skin evaporative heat loss (skin EHL) (41.5 +/- 11.5 g/kg X day TEWL; 24.1 +/- 6.5 kcal/kg X day skin EHL) than infants of 34 weeks and greater (11.1 +/- 4.1 g/kg X day; 6.4 +/- 2.4 kcal/kg X day). Infants of 30-33 weeks of gestation had intermediate values (22.4 +/- 7.6 g/kg X day; 13 +/- 4.4 kcal/kg X day). From the third week of life on, TEWL was similar for all preterm infants, i.e. 14.2 +/- 2.6 to 12.7 +/- 1.9 g/kg X day and corresponds to skin EHL of 8.2 +/- 1.5 to 7.4 +/- 1.1 kcal/kg X day. There was a significant inverse relationship between gestational age and TEWL and also between postnatal age and TEWL. In an additional group of 7 preterm infants (30-34 weeks of gestation, mean postnatal age of 21 +/- 9 days) transepidermal water loss and energy expenditure were measured simultaneously. The skin evaporative heat loss (8.8 +/- 2.5 kcal/kg X day) accounted for 17 +/- 5% of energy expenditure (53.3 +/- 4.1 kcal/kg X day). This study emphasizes that in infants of less than 30 weeks of gestation, the transepidermal water loss is of great importance and makes a major contribution to water and heat balances.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
It is well established that at ambient and supercooled conditions water can be described as a percolating network of H bonds. This work is aimed at identifying, by neutron diffraction experiments combined with computer simulations, a percolation line in supercritical water, where the extension of the H-bond network is in question. It is found that in real supercritical water liquidlike states are observed at or above the percolation threshold, while below this threshold gaslike water forms small, sheetlike configurations. Inspection of the three-dimensional arrangement of water molecules suggests that crossing of this percolation line is accompa- nied by a change of symmetry in the first neighboring shell of molecules from trigonal below the line to tetrahedral above.
Resumo:
Introduction: As part of the roadside development along the Interstate Highway System, the Iowa State Highway Commission has constructed eight pair of rest area facilities. Furthermore, two pair are presently under construction with an additional two pair proposed for letting in 1967. An additional nine and one-half pairs of rest areas are in the planning phase, a grand total of 45 rest Brea buildings. The facilities existing were planned and designed in a relatively short period of time. The rest area facilities are unusual in terms of water use, water demand rates, and the fact that there are no applicable guidelines from previous installations. Such facilities are a pioneering effort to furnish a service -which the travelling public desires and will use. The acceptance and current use of the existing facilities shows that the rest areas do provide a service the public will use and appreciate. The Iowa State Highway Commission is to be congratulated for this· pioneering effort. However there are problems, as should be expected when design of a new type of facility has no past operating experience to use as a guide. Another factor which enters is that a rest area facility is quite different and rather unrelated to engineering in the highway field of practice. Basically, the problems encountered can be resolved into several areas, namely 1) maintenance problems in equipment due to 2) insufficient capacity of several other elements of the water systems, and 3) no provisions for water quality control. This study and report is supposed to essentially cover the review of the rest areas, either existing and under construction or letting. However, the approach used has been somewhat different. Several basic economically feasible water system schemes have been developed which are· adaptable to the different well capacities and different water qualities encountered. These basic designs are used as a guide in recommending modifications to the existing rest area water systems, anticipating that the basic designs will be used for future facilities. The magnitude of the problems involved is shown by the fact that the projected water use and demand variations of each rest area building is equivalent to the water supply for a community of about 100 people. The problems of proper operation and maintenance of an eventual thirty to forty-five such facilities are gigantic. For successful operation the rest area water systems must have a high degree of standardization and interchangeability of all elements of the water systems, even if it means a limited degree of over-design in some rest area facilities.