991 resultados para visible image sensor
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.
Resumo:
’Bry sig om’ förekommer flitigt i sammanhang där människor vårdar och tar hand om varandra såväl i det vardagliga naturliga vårdandet som i det professionella vårdandet. ’Bry sig om’ är ett språkligt uttryck i människors vardagsspråk som hör samman med ’små vardagliga saker’ som är av betydelse. ’Bry sig om’ har även tydlig förbindelse med vårda och ansa i Erikssons caritativa vårdteori men har inte tidigare varit föremål för klinisk vårdvetenskaplig forskning vilket är bakgrunden till denna studie. Inom Erikssons caritativa vårdteori utgörs grundordningen av kärnbegreppen caritas, enheten människa, hälsa, lidande och vårdande. I den här avhandlingen är syftet att vidga förståelsen för kärnbegreppet vårdandet genom att utforska innebörden i praxisbegreppet ’bry sig om’. Studien har en hermeneutisk ansats och är en sammanläggningsavhandling med fyra delstudier i form av begreppsanalys och tre empiriska studier. Materialet i begreppsutredningen är etymologisk ordbok och svenska ordböcker. I de empiriska delstudierna består materialet av självbiografisk text skrivet av en patient och händelser som patienter och vårdare varit med om vilket förstås som betydelsefullt material för klinisk vårdvetenskaplig forskning. Den nya förståelsen gestaltas i ett tankemönster där ’bry sig om’ framträder som en inre etisk hållning där människan som är på plats kan finnas till och därmed betyda något för en annan människa. Att betyda något för en annan människa är uttryck för det naturliga omsorgsfulla vårdandet där patienten förnimmer en kärleksfull hållning i vårdarens varsamma kärleksfulla händer och varma röst. ’Bry sig om’, har sin grundval i det naturliga omsorgsfulla vårdandet som konstituerar människan som människa. Det som framkommit i avhandlingen är möjligheten att undersöka praxisbegrepp inom vårdvetenskapen där ’bry sig om’ bidragit till att synliggöra vårdandet och därmed innebörden och meningen i ansandet, lekandet och lärandet på ett nytt och annorlunda sätt ur ett kliniskt vårdvetenskapligt perspektiv.
Resumo:
This master’s thesis is devoted to study different heat flux measurement techniques such as differential temperature sensors, semi-infinite surface temperature methods, calorimetric sensors and gradient heat flux sensors. The possibility to use Gradient Heat Flux Sensors (GHFS) to measure heat flux in the combustion chamber of compression ignited reciprocating internal combustion engines was considered in more detail. A. Mityakov conducted an experiment, where Gradient Heat Flux Sensor was placed in four stroke diesel engine Indenor XL4D to measure heat flux in the combustion chamber. The results which were obtained from the experiment were compared with model’s numerical output. This model (a one – dimensional single zone model) was implemented with help of MathCAD and the result of this implementation is graph of heat flux in combustion chamber in relation to the crank angle. The values of heat flux throughout the cycle obtained with aid of heat flux sensor and theoretically were sufficiently similar, but not identical. Such deviation is rather common for this type of experiment.
Resumo:
Trough computed tomography (CT), it is possible to evaluate lymph nodes in detail and to detect changes in these structures earlier than with radiographs and ultrasound. Lack of information in the veterinary literature directed the focus of this report to normal aspects of the axillary and mediastinal lymph nodes of adult dogs on CT imaging. A CT scan of 15 normal adult male and female Rottweilers was done. To define them as clinically sound, anamnesis, physical examination, complete blood count, renal and hepatic biochemistry, ECG, and thoracic radiographs were performed. After the intravenous injection of hydrosoluble ionic iodine contrast medium contiguous 10mm in thickness thoracic transverse images were obtained with an axial scanner. In the obtained images mediastinal and axillary lymph nodes were sought and when found measured in their smallest diameter and their attenuation was compared to musculature. Mean and standard deviation of: age, weight, body length and the smallest diameter of the axillary and mediastinal lymph nodes were determined. Mean and standard deviation of parameters: age 3.87±2.03 years, weight 41.13±5.12, and body length 89.61±2.63cm. Axillary lymph nodes were seen in 60% of the animals, mean of the smallest diameter was 3.58mm with a standard deviation of 2.02 and a minimum value of 1mm and a maximum value of 7mm. From 13 observed lymph nodes 61.53% were hypopodense when compared with musculature, and 30.77% were isodense. Mediastinal lymph nodes were identified in 73.33% of the dogs; mean measure of the smallest diameter was 4.71mm with a standard deviation of 2.61mm and a minimum value of 1mm, and a maximum value of 8mm. From 14 observed lymph nodes 85.71% were isodense when compared with musculature and 14.28% were hypodense. The results show that it is possible to visualize axillary and mediastinal lymph nodes in adult clinically sound Rottweilers with CT using a slice thickness and interval of 10mm. The smallest diameter of the axillary and mediastinal lymph nodes not surpassed 7mm and 8mm respectively. Their attenuations were equal or smaller than that of musculature in the post contrast scan.
Resumo:
The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.
Resumo:
The Shadow Moiré fringe patterns are level lines of equal depth generated by interference between a master grid and its shadow projected on the surface. In simplistic approach, the minimum error is about the order of the master grid pitch, that is, always larger than 0,1 mm, resulting in an experimental technique of low precision. The use of a phase shift increases the accuracy of the Shadow Moiré technique. The current work uses the phase shifting method to determine the surfaces three-dimensional shape using isothamic fringe patterns and digital image processing. The current study presents the method and applies it to images obtained by simulation for error evaluation, as well as to a buckled plate, obtaining excellent results. The method hands itself particularly useful to decrease the errors in the interpretation of the Moiré fringes that can adversely affect the calculations of displacements in pieces containing many concave and convex regions in relatively small areas.
Resumo:
Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).
Resumo:
The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.
Resumo:
The main objective of this Master’s Thesis was to examine the perceived city brand image of tourists and residents. It was aimed to accomplish by examining first the contribution of city attributes and marketing communications on forming brand attitudes, and then discover how the brand attitudes influence on city brand image. The impact of brand attitudes and city brand image on behavioral intention was also reviewed. The empirical part of the thesis was conducted with a quantitative method through online-based survey. The sample (n = 492) consisted of tourists and residents of the case city. The data was analyzed with statistical analyses by SPSS program. Brand attitudes, based on the main attributes, were calculated through multi-attribute attitude model. The results confirmed exposure to marketing communications has direct and positive influence on brand attitudes, especially the offline marketing communications. The findings revealed brand attitudes impact directly on city brand image perception. Brand attitudes and brand image dimensions had direct impact on tourists and residents’ behavioral intention. The findings provide important information for the city marketers. They increase marketers understanding on how target population perceives the city brand image and how it impacts on their future behavior. This thesis reveals the perception of current city brand image and gives guidance on what to emphasize in city branding to increase city’s attractiveness in conjunction with its economic development. Furthermore, the created framework can be utilized also in the future researches.
Resumo:
The aim of this thesis was to examine congruencies between university identity and university images of prospective and current students. Therefore, factors essentially influencing on expected and experienced university images were identified. Providing an understanding on the differences in the formation of both concepts allowed the analysis of potential incongruities between a university’s identity and the perceptions its students hold. The study was conducted in July and August 2013 at Lappeenranta University of Technology by means of a web-based research survey. The sample consisted of 160 international Master’s degree students who were admitted in 2011, 2012 and 2013. Descriptive and multivariate statistical analysis methods were used to process the data. The results of the study indicated statistically significant incongruities between the case university’s identity and its students’ images. Further, the expected and experienced university images showed incongruities to each other. Deviations were additionally detected to be dependent on the students’ home regions. All in all, there is potential for an improvement of the students’ experiences resulting from a low perception of the student’s preparation for future job life.
Resumo:
The goal of this thesis is to study how a solution-oriented business-to-business company can utilize its brand as a strategic asset by using the concepts of brand identity and brand image. The study analyses the intended brand message (identity) contrasting it with the customer perceptions (image) to reveal points of parity and congruence. The study uses a case company as an example and discusses the benefits of brand management as well. Internally, brands can be studied by performing a set of interviews amongst top and middle management. The interviews need to consider the various elements of branding from associations to differentiation and value creation. Customers’ perceptions can be reliably studied via online survey designed to compare the intended brand message with customers’ experiences. From the perspective of industrial management the incentive for brand development lies in both monetary and managerial benefits. In literature the four essential benefits of B2B branding are risk dilution, efficiency of communications, strategic direction and price premiums. As a result, suggestive models for brand identity and image were devised and compared. The Case Company perceives itself as a technically oriented open-integrator, with a strong focus on reliability and customer service. Customers agree with the picture in general, but there are some points of parity as well: they are quite satisfied with the company and perceive it as reliable and providing the promised value. The problematic areas revolve around customer interaction and maintaining the leadership position. The results confirm previous findings in B2B branding theory, where the reliability and credibility of the supplier are in major role. The results also suggest a holistic, corporate approach on branding.
Resumo:
Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.
Resumo:
The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.