986 resultados para vibration characteristics
Resumo:
An ultrasonic pulse-echo method was used to measure the transit time of longitudinal and transverse (10 MHz) elastic waves in a Nd60Al10Fe20Co10 bulk metallic glass (BMG). The measurements were carried out under hydrostatic pressure up to 0.5 GPa at room temperature. On the basis of experimental data for the sound velocities and density, the elastic moduli and Debye temperature of the BMG were derived as a function of pressure. Murnaghan's equation of state is obtained. The normal behaviour of the positive pressure dependence of the ultrasonic velocities was observed for this glass. Moreover, the compression curve, the elastic constants, and the Debye temperature of the BMG are calculated on the basis of the similarity between their physical properties in the glassy state and those in corresponding crystalline state. These results confirm qualitatively the theoretical predictions concerning the features of the microstructure and interatomic bonding in the Nd60Al10Fe20Co10 BMG.
Resumo:
This paper explores the potential of the piecewise linear vibration absorber in a system subject to narrow band harmonic loading. Such a spring is chosen because the design of linear springs is common knowledge among engineers. The two-degrees-of-freedom system is solved by using the Incremental Harmonic Balance method, and response aspects such as stiffness crossing frequency and jump behaviour are discussed. The effects of mass, stiffness, natural frequency ratios, and stiffness crossing positions on the suppression zone are probed. It is shown that a hardening absorber can deliver a wider bandwidth than a linear one over a range of frequencies. The absorber parameters needed to produce good designs have been determined and the quality of the realized suppression zone is discussed. Design guidelines are formulated to aid the parameter selection process.
Resumo:
The damage mechanism of a cracked material due to laser beam thermal shock is an important problem when the interactions of high power laser beam with materials are studied. The transient thermal stress intensity factors (TSIFs) for a center crack in an infinite plate subjected to laser beam thermal shock are investigated. When the crack is in the heat affected zone, the compressive thermal stress causes the crack surface to come into contact with each other over a certain contact length, but the high tensile stresses around the crack tip tend to open the crack. In this case, the problem may be treated as a pair of embedded cracks problem with a smooth closure condition of the center crack. The TSIFs and the crack contact lengths are calculated with different laser beam spatial shapes. The TSIFs induced by thermal shock are in marked different from those induced by general mechanical loading.
Resumo:
An equilibrium equation for the turbulence energy in sediment-laden flows was derived on the basis of solid-liquid two-phase flow theory. The equation was simplified for two-dimensional, uniform, steady and fully developed turbulent hyperconcentrated flows. An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation, which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows. Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows. A total of 115 experimental runs were carried out, comprising 70 runs with natural sediments and 45 runs with cinder powder. Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data. Furthermore, the characteristics of energy dissipation in hyperconcentrated flows were identified and described. It was found that the high sediment concentration does not increase the energy dissipation; on the contrary, it decreases flow resistance.
A computationally efficient software application for calculating vibration from underground railways
Resumo:
Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case 1: pipe is laid above seabed and Case 11: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e(0)/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of V-r for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e(0)/D (-0.25 < e(0)/D < 0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A previously published refined shear deformation theory is used to analyse free vibration of laminated shells. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first-order shear deformation theory, hut the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of symmetric cross-ply laminated cylindrical shells, symmetric and antisymmetric cross-ply cylindrical panels is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.
A software application for calculating vibration due to moving trains in underground railway tunnels