973 resultados para vertical wind shear
Resumo:
ENGLISH: Intensification of the Azores high pressure cell in mid-year, with concomitant air flow from the Caribbean into the Pacific, is shown to be responsible for a secondary minimum of precipitation observed along the tropical Pacific coast of the Americas, and to have a measurable effect on wind and precipitation several hundred kilometers offshore. SPANISH: La intensificación de la célula de alta presión de las Azores a mediados del año, y la corriente de aire concomitante que entra al Pacífico procedente del Caribe, se demuestra que es la causante de un mínimo secundario de precipitación observado a lo largo de la costa tropical de las Américas en el Pacífico y que tiene un efecto mensurable sobre el viento y la precipitación varios cientos de kilómetros mar afuera. (PDF contains 23 pages.)
Resumo:
Modern wind turbines are designed in order to work in variable speed opera-tions. To perform this task, these turbines are provided with adjustable speed generators, like the double feed induction generator (DFIG). One of the main advantages of adjustable speed generators is improving the system efficiency compared with _xed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However, this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. The proposed design also uses the vector oriented control theory in order to simplify the DFIG dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and pa-rameter uncertainties using the Lyapunov stability theory. Finally, the simulated results show on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, which usually appear in real systems.
Resumo:
Presentado en el 13th WSEAS International Conference on Automatic Control, Modelling and Simulation, ACMOS'11
Resumo:
POWERENG 2011
Resumo:
EFTA 2009
Resumo:
It is well known in the scientific community that some remote sensing instruments assume that sample volumes present homogeneous conditions within a defined meteorological profile. At complex topographic sites and under extreme meteorological conditions, this assumption may be fallible depending on the site, and it is more likely to fail in the lower layers of the atmosphere. This piece of work tests the homogeneity of the wind field over a boundary layer wind profiler radar located in complex terrain on the coast under different meteorological conditions. The results reveal the qualitative importance of being aware of deviations in this homogeneity assumption and evaluate its effect on the final product. Patterns of behavior in data have been identified in order to simplify the analysis of the complex signal registered. The quality information obtained from the homogeneity study under different meteorological conditions provides useful indicators for the best alternatives the system can offer to build wind profiles. Finally, the results are also to be considered in order to integrate them in a quality algorithm implemented at the product level.
Resumo:
(EuroPES 2009)
Resumo:
Recently, the size dependence of mechanical behaviors, particularly the yield strength and plastic deformation mode, of bulk metallic glasses (BMG) has created a great deal of interest. Contradicting conclusions have been drawn by different research groups, based on various experiments on different BMG systems. Based on in situ compression transmission electron microscopy (TEM) experiments on Zr41Ti14Cu12.5Ni10Be22.5 (Vit 1) nanopillars, this paper provides strong evidence that shear banding still prevails at specimen length scales as small as 150 nm in diameter. This is supported by in situ and ex situ images of shear bands, and by the carefully recorded displacement bursts under load control its well as load drops under displacement control. Finite element modeling of the stress state within the pillar shows that the unavoidable geometry constraints accompanying such experiments impart a strong effect on the experimental results, including non-uniform stress distributions and high level hydrostatic pressures. The seemingly improved compressive ductility is believed to be due to such geometry constraints. Observations underscore the notion that the mechanical behavior of metallic glasses, including strength and plastic deformation mode, is size independent at least in Vit 1. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We derive an explicit expression for predicting the thicknesses of shear bands in metallic glasses. The model demonstrates that the shear-band thickness is mainly dominated by the activation size of the shear transformation zone (STZ) and its activation free volume concentration. The predicted thicknesses agree well with the results of measurements and simulations. The underlying physics is attributed to the local topological instability of the activated STZ. The result is of significance in understanding the origin of inhomogeneous flow in metallic glasses. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [ Nature Mater. 2 ( 2003) 449, Intermetallics 14 ( 2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.
Resumo:
Shear banding characterization of Zr64.13Cu15.75Ni10.12Al10 and Zr65Cu15Ni10Al10 bulk metallic glasses (BMGs) with significant difference in inherent plasticity and quite similar chemical composition was studied by depth sensitive macroindentaion tests with conical indenter. Well-developed shear band pattern can be found for both BMGs after indentation. Distinct difference in the shear band spacing, scale of plastic deformation region and the shear band branching in the two BMGs account for the different plasticity.