965 resultados para utility theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assemblages of circular tubes and circular honeycombs in close packed arrangement are presently both competing and complementing regular honeycomb structures (HCS). The intrinsic isotropy of bundled tubes/rings in hexagonal arrays restricts their use to applications with isotopic need. With the aim of extending the utility of tubes/rings assemblages to anisotropic needs, this paper explores the prospects of bundled tubes and circular honeycombs in a general diamond array structure (DAS) to cater these needs. To this end, effective transverse Young's moduli and Poisson's ratio for thick/thin DAS are obtained theoretically. Analysis frameworks including thin ring theory (TRT), curved beam theory (CBT) and elasticity formulations are tested and corroborated by FEA employing contact elements. Results indicate that TRT and CBT are reasonable for thin tubes and honeycombs. Nevertheless, TRT yields compact formulae to study the anisotropy ratio, moduli spectrum and sensitivity of the assemblage as a function of thicknesses and array structure. These formulae supplement designers as a guide to tailor the structures. On the other hand, elasticity formulation can estimate over a larger range including very thick tubes/rings. In addition, this formulation offers to estimate refined transverse strengths of assemblages. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a system with multiple Femtocells operating in a Macrocell. The transmissions in one Femtocell interfere with its neighboring Femtocells as well as with the Macrocell Base Station. We model Femtocells as selfish nodes and the Macrocell Base Station protects itself by pricing subchannels for each usage. We use Stackelberg game model to study this scenario and obtain equilibrium policies that satisfy certain quality of service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We formally extend the CFT techniques introduced in arXiv: 1505.00963, to phi(2d0/d0-2) theory in d = d(0) dimensions and use it to compute anomalous dimensions near d(0) = 3, 4 in a unified manner. We also do a similar analysis of the O(N) model in three dimensions by developing a recursive combinatorial approach for OPE contractions. Our results match precisely with low loop perturbative computations. Finally, using 3-point correlators in the CFT, we comment on why the phi(3) theory in d(0) = 6 is qualitatively different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (delta (P)) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity, delta (P) ) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, delta (P) shifts to higher values. This temperature and number density dependent value of delta (P) saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (delta (TP)). This value (delta (TP) similar to 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (delta (TP)) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting.