1000 resultados para usnic acid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 mul CO2 l(-1) and aeration gave the highest biomass yield (634 mg dry wt l(-1)), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g(-1) dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:5omega3) (16 mg g(-1) dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

F-4 generation of human growth hormone (hGH) gene-transgenic red common carp, and the non-transgenic controls were fed for 8 weeks on purified diets with 20%, 30% or 40% protein. Analysis of whole-body amino acids showed that the proportions of lysine, leucine, phenylalanine, valine and alanine, as percentages of body protein, increased significantly, while those of arginine, glutamic acid and tyrosine decreased, with increases in dietary protein level in at least one strain of fish. Proportions of the other amino acids were unaffected by the diets. The proportions of lysine and arginine were significantly higher, while those of leucine and alanine were lower in the transgenics than in the controls in at least one diet group. Proportions of the other amino acids were unaffected by strain. The results suggest that the whole-body amino acid profile of transgenic carp, when expressed as proportions of body protein, was in general, similar to that of the non-transgenic controls. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments indicated that disorder effect in deoxyribonucleic acid (DNA) may lead to a transition of the electronic hole transport mechanism from band resonant tunneling to thermally activated hopping. In this letter, based on Mott's variable-range hopping theory, we present a kinetic study for the hole transport properties of DNA molecules. Beyond the conventional argument in large-scale systems, our numerical study for finite-size DNA molecules reveals a number of unique features for: (i) the current-voltage characteristics, (ii) the temperature and length dependence, and (iii) the transition from conducting to insulating behaviors. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantum chemistry based Green's function formulation of long-range charge transfer in deoxyribose nucleic acid (DNA) double helix is proposed. The theory takes into account the effects of DNA's electronic structure and its incoherent interaction with aqueous surroundings. In the implementation, the electronic tight-binding parameters for unsolvated DNA molecules are determined at the HF/6-31G* level, while those for individual nucleobase-water couplings are at a semiempirical level by fitting with experimental redox potentials. Numerical results include that: (i) the oxidative charge initially at the donor guanine site does hop sequentially over all guanine sites; however, the revealed rates can be of a much weaker distance dependence than that described by the ordinary Ohm's law; (ii) the aqueous surroundings-induced partial incoherences in thymine/adenine bridge bases lead them to deviate substantially from the superexchange regime; (iii) the time scale of the partially incoherent hole transport through the thymine/adenine pi stack in DNA is about 5 ps. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MoNi/gamma-Al2O3 catalysts were prepared by the impregnation method. The catalyst samples were characterized by XRD and TPR. The effects of Mo promoter content and the catalyst reducing temperature Oil hydrotreatment activity of the catalyst were studied under 200 degrees C and 3 MPa hydrogen pressure using acetic acid as the model compound. The XRD results indicate that the addition of Mo promoter is beneficial to the uniformity of nickel species on the catalyst and decreases the Interaction between nickel species and the support Which results in the decrease the of NiAl2O4 spinel formation. The addition of Mo promoter also decreases the reducing temperature of the catalyst. After the catalyst of 0.06 MoNi/gamma-Al2O3 being reduced Under the atmosphere of H-2/N-2(5/95, V/V), nickel oxide was reduced to Ni-0. The reaction was promoted obviously upon the addition of the MoNi/gamma-Al2O3 catalyst reduced at 600 degrees C. The Mo-modified Ni/gamma-Al2O3 catalyst reduced at 600 degrees C displayed the highest activity during the reaction, the conversion of acetic acid reached the highest point of 33.2%. The products included ethyl acetate and water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid-base stabilities of Al-13 and Al-30 in polyaluminum coagulants during aging and after dosing into water were studied systematically using batch and flow-through acid-base titration experiments. The acid decomposition rates of both Al-13 and Al-30 increase rapidly with the decrease in solution pH. The acid decompositions of Al-13 and Al-30 with respect to H+ concentration are composed of two parallel first-order and second-order reactions, and the reaction orders are 1.169 and 1.005, respectively. The acid decomposition rates of Al-13 and Al-30 increase slightly when the temperature increases from 20 to ca. 35 A degrees C, but decrease when the temperature increases further. Al-30 is more stable than Al-13 in acidic solution, and the stability difference increases as the pH decreases. Al-30 is more possible to become the dominant species in polyaluminum coagulants than Al-13. The acid catalyzed decomposition and followed by recrystallization to form bayerite is one of the main processes that are responsible for the decrease of Al-13 and Al-30 in polyaluminum coagulants during storage. The deprotonation and polymerization of Al-13 and Al-30 depend on solution pH. The hydrolysis products are positively charged, and consist mainly of repeated Al-13 and Al-30 units rather than amorphous Al(OH)(3) precipitates. Al-30 is less stable than Al-13 upon alkaline hydrolysis. Al-13 is stable at pH < 5.9, while Al-30 lose one proton at the pH 4.6-5.75. Al-13 and Al-30 lose respective 5 and 10 protons and form [Al-13] (n) and [Al-30] (n) clusters within the pH region of 5.9-6.25 and 5.75-6.65, respectively. This indicates that Al-30 is easier to aggregate than Al-13 at the acidic side, but [Al-13] (n) is much easier to convert to Alsol-gel than [Al-30] (n) . Al-30 possesses better characteristics than Al-13 when used as coagulant because the hydrolysis products of Al-30 possess higher charges than that of Al-13, and [Al-30] (n) clusters exist within a wider pH range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols and is a feedstock for production of biodiesel fuel now. The transesterification of acid oil and methanol to biodiesel was catalyzed by immobilized Candida lipase in fixed bed reactors. The reactant solution was a mixture of acid oil, water, methanol and solvent (hexane) and the main product was biodiesel composed of fatty acid methyl ester (FAME) of which the main component was methyl oleate. The effects of lipase content, solvent content, water content temperature and flow velocity of the reactant on the reaction were analyzed. The experimental results indicate that a maximum FAME content of 90.18% can be obtained in the end product under optimum conditions. Most of the chemical and physical properties of the biodiesel were superior to the standards for 0(#) diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D6751).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 degrees C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.