966 resultados para two-factor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used a multiplex selection approach to construct a library of DNA-protein interaction sites recognized by many of the DNA-binding proteins present in a cell type. An estimated minimum of two-thirds of the binding sites present in a library prepared from activated Jurkat T cells represent authentic transcription factor binding sites. We used the library for isolation of "optimal" binding site probes that facilitated cloning of a factor and to identify binding activities induced within 2 hr of activation of Jurkat cells. Since a large fraction of the oligonucleotides obtained appear to represent "optimal" binding sites for sequence-specific DNA-binding proteins, it is feasible to construct a catalog of consensus binding sites for DNA-binding proteins in a given cell type. Qualitative and quantitative comparisons of the catalogs of binding site sequences from various cell types could provide valuable insights into the process of differentiation acting at the level of transcriptional control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the effects of retinoic acid (RA) and thyroid hormone (3,3',5-triiodothyronine; T3) on platelet-activating factor receptor (PAFR) gene expression in intact rats and the ability of two human PAFR gene promoters (PAFR promoters 1 and 2) to generate two transcripts (PAFR transcripts 1 and 2). Northern blotting showed that RA and T3 regulated PAFR gene expression only in rat tissues that express PAFR transcript 2. Functional analysis of the human PAFR promoter 2 revealed that responsiveness to RA and T3 was conferred through a 24-bp element [PAFR-hormone response element (HRE) located from -67 to -44 bp of the transcription start site, whereas PAFR promoter 1 did not respond to these hormones. The PAFR-HRE is composed of three direct repeated TGACCT-like hexamer motifs with 2-and 4-bp spaces, and the two upstream and two downstream motifs were identified as response elements for RA and T3. Thus, the PAF-PAFR pathway is regulated by the PAFR level altered by a tissue-specific response to RA and T3 through the PAFR-HRE of the PAFR promoter 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central to signaling by fibroblast growth factors (FGFs) is the oligomeric interaction of the growth factor and its high-affinity cell surface receptor, which is mediated by heparin-like polysaccharides. It has been proposed that the binding of heparin-like polysaccharides to FGF induces a conformational change in FGF, resulting in the formation of FGF dimers or oligomers, and this biologically active form is 'presented' to the FGF receptor for signal transduction. In this study, we show that monomeric basic FGF (FGF-2) preferentially self-associates and forms FGF-2 dimers and higher-order oligomers. As a consequence, FGF-2 monomers are oriented for binding to heparin-like polysaccharides. We also show that heparin-like polysaccharides can readily bind to self-associated FGF-2 without causing a conformational change in FGF-2 or disrupting the FGF-2 self-association, but that the bound polysaccharides only additionally stabilize the FGF-2 self-association. The preferential self-association corresponds to FGF-2 translations along two of the unit cell axes of the FGF-2 crystal structures. These two axes represent the two possible heparin binding directions, whereas the receptor binding sites are oriented along the third axis. Thus, we propose that preferential FGF-2 self-association, further stabilized by heparin, like "beads on a string," mediates FGF-2-induced receptor dimerization and activation. The observed FGF-2 self-association, modulated by heparin, not only provides a mechanism of growth factor activation but also represents a regulatory mechanism governing FGF-2 biological activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the three-dimensional structure of osteogenic protein 1 (OP-1, also known as bone morphogenetic protein 7) to 2.8-A resolution. OP-1 is a member of the transforming growth factor beta (TGF-beta) superfamily of proteins and is able to induce new bone formation in vivo. Members of this superfamily share sequence similarity in their C-terminal regions and are implicated in embryonic development and adult tissue repair. Our crystal structure makes possible the structural comparison between two members of the TGF-beta superfamily. We find that although there is limited sequence identity between OP-1 and TGF-beta 2, they share a common polypeptide fold. These results establish a basis for proposing the OP-1/TGF-beta 2 fold as the primary structural motif for the TGF-beta superfamily as a whole. Detailed comparison of the OP-1 and TGF-beta 2 structures has revealed striking differences that provide insights into how these growth factors interact with their receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA synthesis by the paramyxovirus respiratory syncytial virus, a ubiquitous human pathogen, was found to be more complex than previously appreciated for the nonsegmented negative-strand RNA viruses. Intracellular RNA replication of a plasmid-encoded "minigenome" analog of viral genomic RNA was directed by coexpression of the N, P, and L proteins. But, under these conditions, the greater part of mRNA synthesis terminated prematurely. This difference in processivity between the replicase and the transcriptase was unanticipated because the two enzymes ostensively shared the same protein subunits and template. Coexpression of the M2 gene at a low level of input plasmid resulted in the efficient production of full-length mRNA and, in the case of a dicistronic minigenome, sequential transcription. At a higher level, coexpression of the M2 gene inhibited transcription and RNA replication. The M2 mRNA contains two overlapping translational open reading frames (ORFs), which were segregated for further analysis. Expression of the upstream ORF1, which encoded the previously described 22-kDa M2 protein, was associated with transcription elongation. A model involving this protein in the balance between transcription and replication is proposed. ORF2, which lacks an assigned protein, was associated with inhibition of RNA synthesis. We propose that this activity renders nucleocapsids synthetically quiescent prior to incorporation into virions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological function of the retinoblastoma protein (RB) in the cell division cycle has been extensively documented, but its apparent role in differentiation remains largely unexplored. To investigate how RB is involved in differentiation, the U937 large-cell lymphoma line was induced to differentiate along a monocyte/macrophage lineage. During differentiation RB was found to interact directly through its simian virus 40 large tumor antigen (T antigen)-binding domain with NF-IL6, a member of the CAAT/enhancer-binding protein (C/EBP) family of transcription factors. NF-IL6 utilizes two distinct regions to bind to the hypophosphorylated form of RB in vitro and in cells. Wild-type but not mutant RB enhanced both binding activity of NF-IL6 to its cognate DNA sequences in vitro and promoter transactivation by NF-IL6 in cells. These findings indicate a novel biochemical function of RB: it activates, by an apparent chaperone-like activity, specific transcription factors important for differentiation. This contrasts with its sequestration and inactivation of other transcription factors, such as E2F-1, which promote progression of the cell cycle. Such disparate mechanisms may help to explain the dual role of RB in cell differentiation and the cell division cycle.