988 resultados para trypsin-like serine protease
Resumo:
We formulate performance assessment as a problem of causal analysis and outline an approach based on the missing data principle for its solution. It is particularly relevant in the context of so-called league tables for educational, health-care and other public-service institutions. The proposed solution avoids comparisons of institutions that have substantially different clientele (intake).
Resumo:
Deletion or substitution of the serine-rich N-terminal stretch of grass phytochrome A (phyA) has repeatedly been shown to yield a hyperactive photoreceptor when expressed under the control of a constitutive promoter in transgenic tobacco or Arabidopsis seedlings retaining their native phyA. These observations have lead to the proposal that the serine-rich region is involved in negative regulation of phyA signaling. To re-evaluate this conclusion in a more physiological context we produced transgenic Arabidopsis seedlings of the phyA-null background expressing Arabidopsis PHYA deleted in the sequence corresponding to amino acids 6-12, under the control of the native PHYA promoter. Compared to the transgenic seedlings expressing wild-type phyA, the seedlings bearing the mutated phyA showed normal responses to pulses of far-red (FR) light and impaired responses to continuous FR light. In yeast two-hybrid experiments, deleted phyA interacted normally with FHY1 and FHL, which are required for phyA accumulation in the nucleus. Immunoblot analysis showed reduced stability of deleted phyA under continuous red or FR light. The reduced physiological activity can therefore be accounted for by the enhanced destruction of the mutated phyA. These findings do not support the involvement of the serine-rich region in negative regulation but they are consistent with a recent report suggesting that phyA turnover is regulated by phosphorylation.
Resumo:
PURPOSE: To identify the genetic defect for the Coppock-like cataract (CCL) affecting a Swiss family, which defect was unlinked to the chromosome 2q33-35 CCL locus. METHODS: A large family was characterized for linkage analysis by slit lamp examination or by the review of drawings made before cataract extraction. The affection status was attributed before genotyping, and the genotyping was masked to the affection status. Two-point and multipoint linkage analyses were performed using the MLINK and the LINKMAP components of the LINKAGE program package (ver. 5.1), respectively. Mutational analysis of candidate genes was performed by a combination of direct cycle sequencing and an amplification refractory mutation system assay. RESULTS: Ten individuals were affected with the CCL phenotype. The disease was autosomal dominant and appeared to be fully penetrant. A new CCL locus was identified on chromosome 22q11.2 within a 11.67-cM interval (maximum lod score [Zmax] = 4.14; theta = 0). Mutational analysis of the CRYBB2 candidate gene identified a disease-causing mutation in exon 6. This sequence change was identical with that previously described to be associated with the cerulean cataract, a clinically distinct entity. CONCLUSIONS: The CCL phenotype is genetically heterogeneous with a second gene on chromosome 22q11.2, CRYBB2. The CCL and the cerulean cataract are two distinct clinical entities associated with the same genetic defect. This work provides evidence for a modifier factor that influences cataract formation and that remains to be identified.
Resumo:
Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex, plays a fundamental role in the sensing of LPS from gram-negative bacteria. Activation of TLR4 signaling pathways by LPS is a critical upstream event in the pathogenesis of gram-negative sepsis, making TLR4 an attractive target for novel antisepsis therapy. To validate the concept of TLR4-targeted treatment strategies in gram-negative sepsis, we first showed that TLR4(-/-) and myeloid differentiation primary response gene 88 (MyD88)(-/-) mice were fully resistant to Escherichia coli-induced septic shock, whereas TLR2(-/-) and wild-type mice rapidly died of fulminant sepsis. Neutralizing anti-TLR4 antibodies were then generated using a soluble chimeric fusion protein composed of the N-terminal domain of mouse TLR4 (amino acids 1-334) and the Fc portion of human IgG1. Anti-TLR4 antibodies inhibited intracellular signaling, markedly reduced cytokine production, and protected mice from lethal endotoxic shock and E. coli sepsis when administered in a prophylactic and therapeutic manner up to 13 h after the onset of bacterial sepsis. These experimental data provide strong support for the concept of TLR4-targeted therapy for gram-negative sepsis.
Resumo:
The aims of this thesis were to better characterize HIV-1 diversity in Portugal, Angola, Mozambique and Cape Verde and to investigate the origin and epidemiological history of HIV-1 in these countries. The impact of these issues in diagnosis, disease progression and susceptibility to ARV therapy was also investigated. Finally, the nature, dynamics and prevalence of transmitted drug resistance (TDR) was determined in untreated HIV-1 infected patients. In Angola, practically all HIV-1 genetic forms were found, including almost all subtypes, untypable (U) strains, CRFs and URFs. Recombinants (first and second generation) were present in 47.1% of the patients. HIV/AIDS epidemic in Angola probably started in 1961, the major cause being the independence war, subsequently spreading to Portugal. In Maputo, 81% of the patients were infected with subtype C viruses. Subtype G, U and recombinants such as CRF37_cpx, were also present. The results suggest that HIV-1 epidemic in Mozambique is evolving rapidly in genetic complexity. In Cape Verde, where HIV-1 and HIV-2 co-circulate, subtype G is the prevailed subtype. Subtypes B, C, F1, U, CRF02_AG and other recombinant strains were also found. HIV-2 isolates belonged to group A, some being closely related to the original ROD isolate. In all three countries numerous new polymorphisms were identified in the RT and PR of HIV-1 viruses. Mutations conferring resistance to the NRTIs or NNRTIs were found in isolates from 2 (2%) patients from Angola, 4 (6%) from Mozambique and 3 (12%) from Cape Verde. None of the isolates containing TDR mutations would be fully sensitive to the standard first-line therapeutic regimens used in these countries. Close surveillance in treated and untreated populations will be crucial to prevent further transmission of drug resistant strains and maximize the efficacy of ARV therapy. In Portugal, investigation of a seronegative case infection with rapid progression to AIDS and death revealed that the patient was infected with a CRF14_BG-like R5-tropic strain selectively transmitted by his seropositive sexual partner. The results suggest a massive infection with a highly aggressive CRF14_BG like strain and/or the presence of an unidentified immunological problem that prevented the formation of HIV-1-specific antibodies. Near full-length genomic sequences obtained from three unrelated patients enabled the first molecular and phylogenomic characterization of CRF14_BG from Portugal; all sequences were strongly related with CRF14_BG Spanish isolates. The mean date of origin of CRF14_BG was estimated to be 1992. We propose that CRF14_BG emerged in Portugal in the early 1990s, spread to Spain in late 1990s as a consequence of IDUs migration and then to the rest of Europe. Most CRF14_BG strains were predicted to use CXCR4 and were associated with rapid CD4 depletion and disease progression. Finally, we provide evidence suggesting that the X4 tropism of CRF14_BG may have resulted from convergent evolution of the V3 loop possibly driven by an effective escape from neutralizing antibody response.
Resumo:
IGF2 is an autocrine ligand for the beta cell IGF1R receptor and GLP-1 increases the activity of this autocrine loop by enhancing IGF1R expression, a mechanism that mediates the trophic effects of GLP-1 on beta cell mass and function. Here, we investigated the regulation of IGF2 biosynthesis and secretion. We showed that glutamine rapidly and strongly induced IGF2 mRNA translation using reporter constructs transduced in MIN6 cells and primary islet cells. This was followed by rapid secretion of IGF2 via the regulated pathway, as revealed by the presence of mature IGF2 in insulin granule fractions and by inhibition of secretion by nimodipine and diazoxide. When maximally stimulated by glutamine, the amount of secreted IGF2 rapidly exceeded its initial intracellular pool and tolbutamide, and high K(+) increased IGF2 secretion only marginally. This indicates that the intracellular pool of IGF2 is small and that sustained secretion requires de novo synthesis. The stimulatory effect of glutamine necessitates its metabolism but not mTOR activation. Finally, exposure of insulinomas or beta cells to glutamine induced Akt phosphorylation, an effect that was dependent on IGF2 secretion, and reduced cytokine-induced apoptosis. Thus, glutamine controls the activity of the beta cell IGF2/IGF1R autocrine loop by increasing the biosynthesis and secretion of IGF2. This autocrine loop can thus integrate changes in feeding and metabolic state to adapt beta cell mass and function.
Resumo:
Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.
Resumo:
Human papillomavirus (HPV) vaccines based on L1 virus-like particle (VLP) can prevent genital HPV infection and associated lesions after three intramuscular injections. Needle-free administration might facilitate vaccine implementation, especially in developing countries. Here we have investigated rectal and vaginal administration of HPV16 L1 VLPs in mice and their ability to induce anti-VLP and HPV16-neutralizing antibodies in serum and in genital, rectal and oral secretions. Rectal and vaginal immunizations were not effective in the absence of adjuvant. Cholera toxin was able to enhance systemic and mucosal anti-VLPs responses after rectal immunization, but not after vaginal immunization. Rectal immunization with Resiquimod and to a lesser extent Imiquimod, but not monophosphoryl lipid A, induced anti-HPV16 VLP antibodies in serum and secretions. Vaginal immunization was immunogenic only if administered in mice treated with nonoxynol-9, a disrupter of the cervico-vaginal epithelium. Our findings show that rectal and vaginal administration of VLPs can induce significant HPV16-neutralizing antibody levels in secretions, despite the fact that low titers are induced in serum. Imidazoquinolines, largely used to treat genital and anal warts, and nonoxonol-9, used as genital microbicide/spermicide were identified as adjuvants that could be safely used by the rectal or vaginal route, respectively.
Resumo:
The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic "signature residue" at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket.
Resumo:
Abstract: To have an added value over BMD, a CRF of osteoporotic fracture must be predictable of the fracture, independent of BMD, reversible and quantifiable. Many major recognized CRF exist.Out of these factorsmany of themare indirect factor of bone quality. TBS predicts fracture independently of BMD as demonstrated from previous studies. The aim of the study is to verify if TBS can be considered as a major CRF of osteoporotic fracture. Existing validated datasets of Caucasian women were analyzed. These datasets stem from different studies performed by the authors of this report or provided to our group. However, the level of evidence of these studies will vary. Thus, the different datasets were weighted differently according to their design. This meta-like analysis involves more than 32000 women (≥50 years) with 2000 osteoporotic fractures from two prospective studies (OFELY&MANITOBA) and 7 crosssectional studies. Weighted relative risk (RR) for TBS was expressed for each decrease of one standard deviation as well as per tertile difference (TBS=1.300 and 1.200) and compared with those obtained for the major CRF included in FRAX®. Overall TBS RR obtained (adjusted for age) was 1.79 [95%CI-1.37-2.37]. For all women combined, RR for fracture for the lowest comparedwith themiddle TBS tertilewas 1.55[1.46- 1.68] and for the lowest compared with the highest TBS tertile was 2.8[2.70-3.00]. TBS is comparable to most of the major CRF (Fig 1) and thus could be used as one of them. Further studies have to be conducted to confirm these first findings.
Resumo:
Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA) receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.
Resumo:
Adjustment of Na+ balance in extracellular fluids is achieved by regulated Na+ transport involving the amiloride-sensitive epithelial Na+ channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+ channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+ currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of alpha- and gamma-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channel's cell surface expression, similarly to Usp10. In mCCD(cl1) cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.
Resumo:
The expression of substance P (SP) was studied in sensory neurons of developing chick lumbosacral dorsal root ganglia (DRG) by using a mixture of periodic acid, lysine and paraformaldehyde as fixative and a monoclonal antibody for SP-like immunostaining. The first SP-like-immunoreactive DRG cells appeared first at E5, then rapidly increased in number to reach a peak (88% of ganglion cells) at E8, and finally declined (59% at E12, 51% after hatching). The fall of the SP-like-positive DRG cells resulted from two concomitant events affecting a subset of small B-neurons: a loss of neuronal SP-like immunoreactivity and cell death. After one hindlimb resection at an early (E6) or late (E12) stage of development (that is before or after establishment of peripheral connections), the DRG were examined 6 days later. In both cases, a drastic neuronal death occurred in the ispilateral DRG. However, the resection at E6 did not change the percentage of SP-like-positive neurons, while the resection at E12 severely reduced the proportion of SP-like-immunoreactive DRG cells (25%). In conclusion, connections established between DRG and peripheral target tissues not only promote the survival of sensory neurons, but also control the maintenance of SP-like-expression. Factors issued from innervated targets such as NGF would support the survival of SP-expressing DRG cells and enhance their SP content while other factors present in skeletal muscle or skin would hinder SP expression and therefore lower SP levels in a subset of primary sensory neurons.