998 resultados para tiempo
Resumo:
Investigación acerca de la experiencia que, en los años 50, constituyó la construcción de tres ciudades sindicales en tres puntos de la costa española. Se analiza desde la perspectiva del papel que ejercieron como herederas del discurso progresista de la Ciutat de Repos y de Vacances del GATCPAC y el talante desarrollista a que apelaron para el fomento del turismo y del ocio de masas.
Resumo:
Colofón
Resumo:
La Aeroelasticidad fue definida por Arthur Collar en 1947 como "el estudio de la interacción mutua entre fuerzas inerciales, elásticas y aerodinámicas actuando sobre elementos estructurales expuestos a una corriente de aire". Actualmente, esta definición se ha extendido hasta abarcar la influencia del control („Aeroservoelasticidad‟) e, incluso, de la temperatura („Aerotermoelasticidad‟). En el ámbito de la Ingeniería Aeronáutica, los fenómenos aeroelásticos, tanto estáticos (divergencia, inversión de mando) como dinámicos (flameo, bataneo) son bien conocidos desde los inicios de la Aviación. Las lecciones aprendidas a lo largo de la Historia Aeronáutica han permitido establecer criterios de diseño destinados a mitigar la probabilidad de sufrir fenómenos aeroelásticos adversos durante la vida operativa de una aeronave. Adicionalmente, el gran avance experimentado durante esta última década en el campo de la Aerodinámica Computacional y en la modelización aeroelástica ha permitido mejorar la fiabilidad en el cálculo de las condiciones de flameo de una aeronave en su fase de diseño. Sin embargo, aún hoy, los ensayos en vuelo siguen siendo necesarios para validar modelos aeroelásticos, verificar que la aeronave está libre de inestabilidades aeroelásticas y certificar sus distintas envolventes. En particular, durante el proceso de expansión de la envolvente de una aeronave en altitud/velocidad, se requiere predecir en tiempo real las condiciones de flameo y, en consecuencia, evitarlas. A tal efecto, en el ámbito de los ensayos en vuelo, se han desarrollado diversas metodologías que predicen, en tiempo real, las condiciones de flameo en función de condiciones de vuelo ya verificadas como libres de inestabilidades aeroelásticas. De entre todas ellas, aquella que relaciona el amortiguamiento y la velocidad con un parámetro específico definido como „Margen de Flameo‟ (Flutter Margin), permanece como la técnica más común para proceder con la expansión de Envolventes en altitud/velocidad. No obstante, a pesar de su popularidad y facilidad de aplicación, dicha técnica no es adecuada cuando en la aeronave a ensayar se hallan presentes no-linealidades mecánicas como, por ejemplo, holguras. En particular, en vuelos de ensayo dedicados específicamente a expandir la envolvente en altitud/velocidad, las condiciones de „Oscilaciones de Ciclo Límite‟ (Limit Cycle Oscillations, LCOs) no pueden ser diferenciadas de manera precisa de las condiciones de flameo, llevando a una determinación excesivamente conservativa de la misma. La presente Tesis desarrolla una metodología novedosa, basada en el concepto de „Margen de Flameo‟, que permite predecir en tiempo real las condiciones de „Ciclo Límite‟, siempre que existan, distinguiéndolas de las de flameo. En una primera parte, se realiza una revisión bibliográfica de la literatura acerca de los diversos métodos de ensayo existentes para efectuar la expansión de la envolvente de una aeronave en altitud/velocidad, el efecto de las no-linealidades mecánicas en el comportamiento aeroelástico de dicha aeronave, así como una revisión de las Normas de Certificación civiles y militares respecto a este tema. En una segunda parte, se propone una metodología de expansión de envolvente en tiempo real, basada en el concepto de „Margen de Flameo‟, que tiene en cuenta la presencia de no-linealidades del tipo holgura en el sistema aeroelástico objeto de estudio. Adicionalmente, la metodología propuesta se valida contra un modelo aeroelástico bidimensional paramétrico e interactivo programado en Matlab. Para ello, se plantean las ecuaciones aeroelásticas no-estacionarias de un perfil bidimensional en la formulación espacio-estado y se incorpora la metodología anterior a través de un módulo de análisis de señal y otro módulo de predicción. En una tercera parte, se comparan las conclusiones obtenidas con las expuestas en la literatura actual y se aplica la metodología propuesta a resultados experimentales de ensayos en vuelo reales. En resumen, los principales resultados de esta Tesis son: 1. Resumen del estado del arte en los métodos de ensayo aplicados a la expansión de envolvente en altitud/velocidad y la influencia de no-linealidades mecánicas en la determinación de la misma. 2. Revisión de la normas de Certificación Civiles y las normas Militares en relación a la verificación aeroelástica de aeronaves y los límites permitidos en presencia de no-linealidades. 3. Desarrollo de una metodología de expansión de envolvente basada en el Margen de Flameo. 4. Validación de la metodología anterior contra un modelo aeroelástico bidimensional paramétrico e interactivo programado en Matlab/Simulink. 5. Análisis de los resultados obtenidos y comparación con resultados experimentales. ABSTRACT Aeroelasticity was defined by Arthur Collar in 1947 as “the study of the mutual interaction among inertia, elastic and aerodynamic forces when acting on structural elements surrounded by airflow”. Today, this definition has been updated to take into account the Controls („Aeroservoelasticity‟) and even the temperature („Aerothermoelasticity‟). Within the Aeronautical Engineering, aeroelastic phenomena, either static (divergence, aileron reversal) or dynamic (flutter, buzz), are well known since the early beginning of the Aviation. Lessons learned along the History of the Aeronautics have provided several design criteria in order to mitigate the probability of encountering adverse aeroelastic phenomena along the operational life of an aircraft. Additionally, last decade improvements experienced by the Computational Aerodynamics and aeroelastic modelization have refined the flutter onset speed calculations during the design phase of an aircraft. However, still today, flight test remains as a key tool to validate aeroelastic models, to verify flutter-free conditions and to certify the different envelopes of an aircraft. Specifically, during the envelope expansion in altitude/speed, real time prediction of flutter conditions is required in order to avoid them in flight. In that sense, within the flight test community, several methodologies have been developed to predict in real time flutter conditions based on free-flutter flight conditions. Among them, the damping versus velocity technique combined with a Flutter Margin implementation remains as the most common technique used to proceed with the envelope expansion in altitude/airspeed. However, although its popularity and „easy to implement‟ characteristics, several shortcomings can adversely affect to the identification of unstable conditions when mechanical non-linearties, as freeplay, are present. Specially, during test flights devoted to envelope expansion in altitude/airspeed, Limits Cycle Oscillations (LCOs) conditions can not be accurately distinguished from those of flutter and, in consequence, it leads to an excessively conservative envelope determination. The present Thesis develops a new methodology, based on the Flutter Margin concept, that enables in real time the prediction of the „Limit Cycle‟ conditions, whenever they exist, without degrading the capability of predicting the flutter onset speed. The first part of this Thesis presents a review of the state of the art regarding the test methods available to proceed with the envelope expansion of an aircraft in altitude/airspeed and the effect of mechanical non-linearities on the aeroelastic behavior. Also, both civil and military regulations are reviewed with respect aeroelastic investigation of air vehicles. The second part of this Thesis proposes a new methodology to perform envelope expansion in real time based on the Flutter Margin concept when non-linearities, as freeplay, are present. Additionally, this methodology is validated against a Matlab/Slimulink bidimensional aeroelastic model. This model, parametric and interactive, is formulated within the state-space field and it implements the proposed methodology through two main real time modules: A signal processing module and a prediction module. The third part of this Thesis compares the final conclusions derived from the proposed methodology with those stated by the flight test community and experimental results. In summary, the main results provided by this Thesis are: 1. State of the Art review of the test methods applied to envelope expansion in altitude/airspeed and the influence of mechanical non-linearities in its identification. 2. Review of the main civil and military regulations regarding the aeroelastic verification of air vehicles and the limits set when non-linearities are present. 3. Development of a methodology for envelope expansion based on the Flutter Margin concept. 4. A Matlab/Simulink 2D-[aeroelastic model], parametric and interactive, used as a tool to validate the proposed methodology. 5. Conclusions driven from the present Thesis and comparison with experimental results.
Resumo:
En este trabajo se aplicó un protocolo de exposición aguda a las vibraciones en competidores de esgrima de nivel nacional, para analizar el efecto producido sobre el sistema neuromuscular en el tiempo de respuesta electiva.
Resumo:
Port. con esc. xil
Resumo:
El autor se cita a si mismo en los ultimos versos
Resumo:
El estudio del comportamiento de la atmósfera ha resultado de especial importancia tanto en el programa SESAR como en NextGen, en los que la gestión actual del tránsito aéreo (ATM) está experimentando una profunda transformación hacia nuevos paradigmas tanto en Europa como en los EE.UU., respectivamente, para el guiado y seguimiento de las aeronaves en la realización de rutas más eficientes y con mayor precisión. La incertidumbre es una característica fundamental de los fenómenos meteorológicos que se transfiere a la separación de las aeronaves, las trayectorias de vuelo libres de conflictos y a la planificación de vuelos. En este sentido, el viento es un factor clave en cuanto a la predicción de la futura posición de la aeronave, por lo que tener un conocimiento más profundo y preciso de campo de viento reducirá las incertidumbres del ATC. El objetivo de esta tesis es el desarrollo de una nueva técnica operativa y útil destinada a proporcionar de forma adecuada y directa el campo de viento atmosférico en tiempo real, basada en datos de a bordo de la aeronave, con el fin de mejorar la predicción de las trayectorias de las aeronaves. Para lograr este objetivo se ha realizado el siguiente trabajo. Se han descrito y analizado los diferentes sistemas de la aeronave que proporcionan las variables necesarias para obtener la velocidad del viento, así como de las capacidades que permiten la presentación de esta información para sus aplicaciones en la gestión del tráfico aéreo. Se ha explorado el uso de aeronaves como los sensores de viento en un área terminal para la estimación del viento en tiempo real con el fin de mejorar la predicción de las trayectorias de aeronaves. Se han desarrollado métodos computacionalmente eficientes para estimar las componentes horizontales de la velocidad del viento a partir de las velocidades de las aeronaves (VGS, VCAS/VTAS), la presión y datos de temperatura. Estos datos de viento se han utilizado para estimar el campo de viento en tiempo real utilizando un sistema de procesamiento de datos a través de un método de mínima varianza. Por último, se ha evaluado la exactitud de este procedimiento para que esta información sea útil para el control del tráfico aéreo. La información inicial proviene de una muestra de datos de Registradores de Datos de Vuelo (FDR) de aviones que aterrizaron en el aeropuerto Madrid-Barajas. Se dispuso de datos de ciertas aeronaves durante un periodo de más de tres meses que se emplearon para calcular el vector viento en cada punto del espacio aéreo. Se utilizó un modelo matemático basado en diferentes métodos de interpolación para obtener los vectores de viento en áreas sin datos disponibles. Se han utilizado tres escenarios concretos para validar dos métodos de interpolación: uno de dos dimensiones que trabaja con ambas componentes horizontales de forma independiente, y otro basado en el uso de una variable compleja que relaciona ambas componentes. Esos métodos se han probado en diferentes escenarios con resultados dispares. Esta metodología se ha aplicado en un prototipo de herramienta en MATLAB © para analizar automáticamente los datos de FDR y determinar el campo vectorial del viento que encuentra la aeronave al volar en el espacio aéreo en estudio. Finalmente se han obtenido las condiciones requeridas y la precisión de los resultados para este modelo. El método desarrollado podría utilizar los datos de los aviones comerciales como inputs utilizando los datos actualmente disponibles y la capacidad computacional, para proporcionárselos a los sistemas ATM donde se podría ejecutar el método propuesto. Estas velocidades del viento calculadas, o bien la velocidad respecto al suelo y la velocidad verdadera, se podrían difundir, por ejemplo, a través del sistema de direccionamiento e informe para comunicaciones de aeronaves (ACARS), mensajes de ADS-B o Modo S. Esta nueva fuente ayudaría a actualizar la información del viento suministrada en los productos aeronáuticos meteorológicos (PAM), informes meteorológicos de aeródromos (AIRMET), e información meteorológica significativa (SIGMET). ABSTRACT The study of the atmosphere behaviour is been of particular importance both in SESAR and NextGen programs, where the current air traffic management (ATM) system is undergoing a profound transformation to the new paradigms both in Europe and the USA, respectively, to guide and track aircraft more precisely on more efficient routes. Uncertainty is a fundamental characteristic of weather phenomena which is transferred to separation assurance, flight path de-confliction and flight planning applications. In this respect, the wind is a key factor regarding the prediction of the future position of the aircraft, so that having a deeper and accurate knowledge of wind field will reduce ATC uncertainties. The purpose of this thesis is to develop a new and operationally useful technique intended to provide adequate and direct real-time atmospheric winds fields based on on-board aircraft data, in order to improve aircraft trajectory prediction. In order to achieve this objective the following work has been accomplished. The different sources in the aircraft systems that provide the variables needed to derivate the wind velocity have been described and analysed, as well as the capabilities which allow presenting this information for air traffic management applications. The use of aircraft as wind sensors in a terminal area for real-time wind estimation in order to improve aircraft trajectory prediction has been explored. Computationally efficient methods have been developed to estimate horizontal wind components from aircraft velocities (VGS, VCAS/VTAS), pressure, and temperature data. These wind data were utilized to estimate a real-time wind field using a data processing approach through a minimum variance method. Finally, the accuracy of this procedure has been evaluated for this information to be useful to air traffic control. The initial information comes from a Flight Data Recorder (FDR) sample of aircraft landing in Madrid-Barajas Airport. Data available for more than three months were exploited in order to derive the wind vector field in each point of the airspace. Mathematical model based on different interpolation methods were used in order to obtain wind vectors in void areas. Three particular scenarios were employed to test two interpolation methods: a two-dimensional one that works with both horizontal components in an independent way, and also a complex variable formulation that links both components. Those methods were tested using various scenarios with dissimilar results. This methodology has been implemented in a prototype tool in MATLAB © in order to automatically analyse FDR and determine the wind vector field that aircraft encounter when flying in the studied airspace. Required conditions and accuracy of the results were derived for this model. The method developed could be fed by commercial aircraft utilizing their currently available data sources and computational capabilities, and providing them to ATM system where the proposed method could be run. Computed wind velocities, or ground and true airspeeds, would then be broadcasted, for example, via the Aircraft Communication Addressing and Reporting System (ACARS), ADS-B out messages, or Mode S. This new source would help updating the wind information furnished in meteorological aeronautical products (PAM), meteorological aerodrome reports (AIRMET), and significant meteorological information (SIGMET).
Resumo:
Este trabajo fin de Máster consiste en la realización de un modelo de respuesta ante procesos de concentración de proveedores, que permita a las empresas proveedoras de servicios profesionales adaptarse a las necesidades crecientes o decrecientes que puedan plantearse en los clientes, además de identificar las diferentes problemáticas que puedan aparecer, de cara a realizar una gestión adecuada de las mismas, garantizando la sostenibilidad económica del negocio. Este modelo de respuesta, estará formado por una serie de mecanismos, que mediante su activación posibilitarán que las empresas de servicios se encuentren preparadas y con garantías en las dos vertientes posibles que se derivan de un proceso de concentración, la más positiva, en la que el desarrollo de actividad requiera nuevas habilidades o nuevos dimensionamientos y la vertiente negativa, donde el nivel de actividad disminuirá. ---ABSTRACT---This Master final work is based on the creation of a response model for the concentration processes carried out by professional services clients, enabling companies that provides this kind of services the capabilities to be adapted for the increasing or decreasing needs that may arise, and identifying the problems that can appears, in order to make a proper management of them and ensuring the economic sustainability of the business. This pattern of response will consist on several mechanisms, which through its activation will enable the capabilities for professional services companies to be prepared and guaranteed the two possible angles derived from a concentration process, the more positive, where activity requires the development of new skills or new sizing and the negative one, where the level of activity decrease or disappears.
Resumo:
Sign.: []2
Resumo:
La Suspensión del Tiempo.De la inefable detención del tiempo = Suspending Time. On Time
Resumo:
La luz que construye el tiempo y el espacio. Sobre la arquitectura de Adolf Appia.
Resumo:
En subtit. se ha sustituido el [.] por los [:]
Resumo:
Según Serrano Morales Cosme Granja trabajó en Valencia entre 1734 y 1765
Resumo:
Sign. : A8