987 resultados para three dimensional imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-A crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-density lipoprotein (LDL) receptor plays a central role in mammalian cholesterol metabolism, clearing lipoproteins which bear apolipoproteins E and B-100 from plasma. Mutations in this molecule are associated with familial hypercholesterolemia, a condition which leads to an elevated plasma cholesterol concentration and accelerated atherosclerosis. The N-terminal segment of the LDL receptor contains a heptad of cysteine-rich repeats that bind the lipoproteins. Similar repeats are present in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. The first repeat of the human LDL receptor has been expressed in Escherichia coli as a glutathione S-transferase fusion protein, and the cleaved and purified receptor module has been shown to fold to a single, fully oxidized form that is recognized by the monoclonal antibody IgG-C7 in the presence of calcium ions. The three-dimensional structure of this module has been determined by two-dimensional NMR spectroscopy and shown to consist of a beta-hairpin structure, followed by a series of beta turns. Many of the side chains of the acidic residues, including the highly conserved Ser-Asp-Glu triad, are clustered on one face of the module. To our knowledge, this structure has not previously been described in any other protein and may represent a structural paradigm both for the other modules in the LDL receptor and for the homologous domains of several other proteins. Calcium ions had only minor effects on the CD spectrum and no effect on the 1H NMR spectrum of the repeat, suggesting that they induce no significant conformational change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowing how motile bacteria move near and along a solid surface is crucial to understanding such diverse phenomena as the migration of infectious bacteria along a catheter, biofilm growth, and the movement of bacteria through the pore spaces of saturated soil, a critical step in the in situ bioremediation of contaminated aquifers. In this study, a tracking microscope is used to record the three-dimensional motion of Escherichia coli near a planar glass surface. Data from the tracking microscope are analyzed to quantify the effects of bacteria-surface interactions on the swimming behavior of bacteria. The speed of cells approaching the surface is found to decrease in agreement with the mathematical model of Ramia et al. [Ramia, M., Tullock, D. L. & Phan-Tien, N. (1993) Biophys J. 65,755-778], which represents the bacteria as spheres with a single polar flagellum rotating at a constant rate. The tendency of cells to swim adjacent to the surface is shown in computer-generated reproductions of cell traces. The attractive interaction potential between the cells and the solid surface is offered as one of several possible explanations for this tendency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inositol polyphosphate 1-phosphatase, inositol monophosphate phosphatase, and fructose 1,6-bisphosphatase share a sequence motif, Asp-Pro-(Ile or Leu)-Asp-(Gly or Ser)-(Thr or Ser), that has been shown by crystallographic and mutagenesis studies to bind metal ions and participate in catalysis. We compared the six alpha-carbon coordinates of this motif from the crystal structures of these three phosphatases and found that they are superimposable with rms deviations ranging from 0.27 to 0.60 A. Remarkably, when these proteins were aligned by this motif a common core structure emerged, defined by five alpha-helices and 11 beta-strands comprising 155 residues having rms deviations ranging from 1.48 to 2.66 A. We used the superimposed structures to align the sequences within the common core, and a distant relationship was observed suggesting a common ancestor. The common core was used to align the sequences of several other proteins that share significant similarity to inositol monophosphate phosphatase, including proteins encoded by fungal qa-X and qutG, bacterial suhB and cysQ (identical to amtA), and yeast met22 (identical to hal2). Evolutionary comparison of the core sequences indicate that five distinct branches exist within this family. These proteins share metal-dependent/Li(+)-sensitive phosphomonoesterase activity, and each predicted tree branch exhibits unique substrate specificity. Thus, these proteins define an ancient structurally conserved family involved in diverse metabolic pathways including inositol signaling, gluconeogenesis, sulfate assimilation, and possibly quinone metabolism. Furthermore, we suggest that this protein family identifies candidate enzymes to account for both the therapeutic and toxic actions of Li+ as it is used in patients treated for manic depressive disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex three-dimensional waves of excitation can explain the observed cell movement pattern in Dictyostelium slugs. Here we show that these three-dimensional waves can be produced by a realistic model for the cAMP relay system [Martiel, J. L. & Goldbeter, A. (1987) Biophys J. 52, 807-828]. The conversion of scroll waves in the prestalk zone of the slug into planar wave fronts in the prespore zone can result from a smaller fraction of relaying cells in the prespore zone. Further, we show that the cAMP concentrations to which cells in a slug are exposed over time display a simple pattern, despite the complex spatial geometry of the waves. This cAMP distribution agrees well with observed patterns of cAMP-regulated cell type-specific gene expression. The core of the spiral, which is a region of low cAMP concentration, might direct expression of stalk-specific genes during culmination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a modelling method to estimate the 3-D geometry and location of homogeneously magnetized sources from magnetic anomaly data. As input information, the procedure needs the parameters defining the magnetization vector (intensity, inclination and declination) and the Earth's magnetic field direction. When these two vectors are expected to be different in direction, we propose to estimate the magnetization direction from the magnetic map. Then, using this information, we apply an inversion approach based on a genetic algorithm which finds the geometry of the sources by seeking the optimum solution from an initial population of models in successive iterations through an evolutionary process. The evolution consists of three genetic operators (selection, crossover and mutation), which act on each generation, and a smoothing operator, which looks for the best fit to the observed data and a solution consisting of plausible compact sources. The method allows the use of non-gridded, non-planar and inaccurate anomaly data and non-regular subsurface partitions. In addition, neither constraints for the depth to the top of the sources nor an initial model are necessary, although previous models can be incorporated into the process. We show the results of a test using two complex synthetic anomalies to demonstrate the efficiency of our inversion method. The application to real data is illustrated with aeromagnetic data of the volcanic island of Gran Canaria (Canary Islands).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, stochastic stability, and overlap equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the 3D Disordered Potts Model with p = 5 and p = 6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower p values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study very large sizes, 483. A finite-size scaling analysis indicates that the data are compatible with the most economical scenario: a common transition temperature for spins and chiralities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform numerical simulations, including parallel tempering, a four-state Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the critical temperature and the value of the critical exponents. Nevertheless, the extrapolation to infinite volume is hampered by strong scaling corrections. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the “random permutation” Potts glass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the usefulness of qualitatively studying and drawing three-dimensional temperature–composition diagrams for ternary systems is pointed out to understand and interpret the particular behavior of the liquid–vapour equilibrium of non-ideal ternary systems. Several examples have been used in order to highlight the interest and the possibilities of this tool, which should be an interesting support not only for lecturers, but also for researchers interested in experimental equilibrium data determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subpixel techniques are commonly used to increase the spatial resolution in tracking tasks. Object tracking with targets of known shape permits obtaining information about object position and orientation in the three-dimensional space. A proper selection of the target shape allows us to determine its position inside a plane and its angular and azimuthal orientation under certain limits. Our proposal is demonstrated both numerical and experimentally and provides an increase the accuracy of more than one order of magnitude compared to the nominal resolution of the sensor. The experiment has been performed with a high-speed camera, which simultaneously provides high spatial and temporal resolution, so it may be interesting for some applications where this kind of targets can be attached, such as vibration monitoring and structural analysis.