974 resultados para thorax pressure
Resumo:
Objective. The objective of this study was to evaluate in vivo the revascularization and the apical and periapical repair after endodontic treatment using 2 techniques for root canal disinfection (apical negative pressure irrigation versus apical positive pressure irrigation plus triantibiotic intracanal dressing) in immature dogs` teeth with apical periodontitis. Study design. Two test groups of canals with experimentally induced apical periodontitis were evaluated according to the disinfection technique: Group 1, apical negative pressure irrigation (EndoVac system), and Group 2, apical positive pressure irrigation (conventional irrigation) plus triantibiotic intracanal dressing. In Group 3 (positive control), periapical lesions were induced, but no endodontic treatment was done. Group 4 (negative control) was composed of sound teeth. The animals were killed after 90 days and the maxillas and mandibles were subjected to histological processing. The sections were stained with hematoxylin and eosin and Mallory Trichrome and examined under light microscopy. A description of the apical and periapical features was done and scores were attributed to the following histopathological parameters: newly formed mineralized apical tissue, periapical inflammatory infiltrate, apical periodontal ligament thickness, dentin resorption, and bone tissue resorption. Intergroup comparisons were done by the Kruskal-Wallis and Dunn`s tests (alpha = 0.05). Results. Although statistically significant difference was found only for the inflammatory infiltrate (P < .05), Group 1 presented more exuberant mineralized formations, more structured apical and periapical connective tissue, and a more advanced repair process than Group 2. Conclusion. From the histological observations, sodium hypochlorite irrigation with the EndoVac system can be considered as a promising disinfection protocol in immature teeth with apical periodontitis, suggesting that the use of intracanal antibiotics might not be necessary. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 779-787)
Resumo:
Objective. The aim of this study was to compare in vivo the efficacy of 2 root canal disinfection techniques (apical negative pressure irrigation versus apical positive pressure irrigation plus triantibiotic intracanal dressing) in immature dog teeth with apical periodontitis. Study design. Two groups of root canals with pulp necrosis and apical periodontitis were evaluated according to the disinfection technique: group 1: apical negative pressure irrigation (EndoVac system); and group 2: apical positive pressure irrigation (conventional irrigation) plus triantibiotic intracanal dressing. The first sample (S1) was collected after lesions were radiographically visible, and the second sample (S2) was collected after apical negative pressure irrigation (group 1) or conventional irrigation/triantibiotic dressing (group 2). All samples were seeded in a culture medium for anaerobic bacteria. Colony-forming unit counts were analyzed statistically by the Mann-Whitney test (alpha = .05). Results. Microorganisms were present in 100% of canals of both groups in S1. In S2, microorganisms were absent in 88.6% of group 1`s canals and 78.28% of group 2`s canals. There was no significant difference between the groups in either S1 (P = .0963) or S2 (P = .0566). There was significant (P < .05) bacterial reduction from S1 to S2 in both groups. Conclusion. In immature teeth with apical periodontitis, use of the EndoVac system can be considered to be a promising disinfection protocol, because it provided similar bacterial reduction to that of apical positive pressure irrigation (conventional irrigation) plus intracanal dressing with the triantibiotic paste, and the use of intracanal antibiotics might not be necessary. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e42-e46)
Resumo:
In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.
Resumo:
Objective Hypertensive rats are more sensitive to the pressor effects of acute ouabain than normotensive rats. We analyzed the effect of chronic ouabain (similar to 8.0 mu g/day, 5 weeks) treatment on the blood pressure of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats and the contribution of vascular mechanisms. Methods Responses to acetylcholine and phenylephrine were analyzed in isolated tail arteries. Protein expression of endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) were also investigated. Results Ouabain treatment enhanced blood pressure only in SHRs. The pD(2) for acetylcholine was decreased in arteries from SHRs compared with Wistar-Kyoto rats, and ouabain did not change this parameter. However, ouabain was able to increase the pD(2) to phenylephrine in SHRs. Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester or potassium channel blockade by tetraetylamonium increased the response to phenylephrine in SHRs, with a smaller increase in response observed in ouabain-treated SHRs. In addition, indomethacin (a COX inhibitor) and ridogrel (a thromboxane A(2) synthase inhibitor and prostaglandin H(2)/thromboxane A(2) receptor antagonist) decreased contraction to phenylephrine in tail rings from ouabain-treated SHRs. Protein expression of endothelial nitric oxide synthase was unaltered following ouabain treatment in SHRs, whereas COX-2 expression was increased. Conclusion Chronic ouabain treatment further increases the raised blood pressure of SHRs. This appears to involve a vascular mechanism, related to a reduced vasodilator influence of nitric oxide and endothelium-derived hyperpolarizing factor and increased production of vasoconstrictor prostanoids by COX-2. These data suggest that the increased plasma levels of ouabain could play an important role in the maintenance of hypertension and the impairment of endothelial function. J Hypertens 27:1233-1242 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Objectives The present study aimed to assess the effect of the specific dipeptidyl peptidase IV (DPPIV) inhibitor sitagliptin on blood pressure and renal function in young prehypertensive (5-week-old) and adult spontaneously hypertensive rats (SHRs; 14-week-old). Methods Sitagliptin (40 mg/kg twice daily) was given by oral gavage to young (Y-SHR + IDPPIV) and adult (A-SHR R IDPPIV) SHRs for 8 days. Kidney function was assessed daily and compared with age-matched vehicle-treated SHR (Y-SHR and A-SHR) and with normotensive Wistar-Kyoto rats (Y-WKY and A-WKY). Arterial blood pressure was measured in these animals at the end of the experimental protocol. Additionally, Na(+)/H(+) exchanger isoform 3 (NHE3) function and expression in microvilli membrane vesicles were assessed in young animals. Results Mean arterial blood pressure of Y-SHR + IDPPIV was significantly lower than that of Y-SHR (104 +/- 3 vs. 123 +/- 5 mmHg, P < 0.01) and was similar to Y-WKY (94 +/- 4 mmHg, P > 0.05). Compared to Y-SHR, Y-SHR + IDPPIV exhibited enhanced cumulative urinary flow and sodium excretion and decreased NHE3 activity and expression in proximal tubule microvilli. In the A-SHR, sitagliptin treatment had no significant effect on either renal function or arterial blood pressure. Conclusion Our data suggest that DPPIV inhibition attenuates blood pressure rising in young prehypertensive SHRs, partially by inhibiting NHE3 activity in renal proximal tubule. J Hypertens 29:520-528 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 +/- A 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 +/- A 1 mu M) and G4 (14.2 +/- A 0.6 mu M) and between G2 (20.1 +/- A 1.7 mu M) and G4 (14.2 +/- A 0.6 mu M). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 +/- A 1.2 mu M) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.
Resumo:
BACKGROUND Oxidized lipoproteins and antioxidized low-density lipoprotein (anti-oxLDL) antibodies (Abs) have been detected in plasma in response to blood pressure (BP) elevation, suggesting the participation of the adaptive immune system. Therefore, treatment of hypertension may act on the immune response by decreasing oxidation stimuli. However, this issue has not been addressed. Thus, we have here analyzed anti-oxLDL Abs in untreated (naive) hypertensive patients shortly after initiation of anti hypertensive therapeutic regimens. METHODS Titers of anti-oxLDL Abs were measured in subjects with recently diagnosed hypertension on stage 1 (n = 94), in primary prevention of coronary disease, with no other risk factors, and naive of anti hypertensive medication at entry. Subjects were randomly assigned to receive perindopril, hydrochlorothiazide (HCTZ), or indapamide (INDA) for 12 weeks, with additional perindopril if necessary to achieve BP control. Abs against copper-oxidized LDL were measured by enzyme-linked immunosorbent assay. RESULTS Twelve-week antihypertensive treatment reduced both office-based and 24-h ambulatory BP measurements (P < 0.0005). The decrease in BP was accompanied by reduction in thiobarbituric acid-reactive substances (TBARS) (P < 0.05), increase in anti-oxLDL Ab titers (P < 0.005), and improvement in flow-mediated dilation (FMD) (P < 0.0005), independently of treatment. Although BP was reduced, we observed favorable changes in anti-oxLDL titers and FMD. CONCLUSIONS We observed that anti-oxLDL Ab titers increase after antihypertensive therapy in primary prevention when achieving BP targets. Our results are in agreement with the concept that propensity to oxidation is increased by essential hypertension and anti-oxLDL Abs may be protective and potential biomarkers for the follow-up of hypertension treatment.
Resumo:
Small-angle X-ray scattering (SAXS) and elastic and quasi-elastic neutron scattering techniques were used to investigate the high-pressure-induced changes on interactions, the low-resolution structure and the dynamics of lysozyme in solution. SAXS data, analysed using a global-fit procedure based on a new approach for hydrated protein form factor description, indicate that lysozyme completely maintains its globular structure up to 1500 bar, but significant modi. cations in the protein-protein interaction potential occur at approximately 600-1000 bar. Moreover, the mass density of the protein hydration water shows a clear discontinuity within this pressure range. Neutron scattering experiments indicate that the global and the local lysozyme dynamics change at a similar threshold pressure. A clear evolution of the internal protein dynamics from diffusing to more localized motions has also been probed. Protein structure and dynamics results have then been discussed in the context of protein-water interface and hydration water dynamics. According to SAXS results, the new configuration of water in the first hydration layer induced by pressure is suggested to be at the origin of the observed local mobility changes.
Resumo:
Lead calcium titanate (Pb(1-x)Ca(x)TiO(3) or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
For the first time, nanograined Pb(1-1.5x)La(x)TiO(3) ferroelectric ceramics, with x=0.2, were produced by a process based on a high-pressure densification technique (HPD) that eliminates the need of high-temperature sintering. Our results showed the production of workable dense ceramics with average grain size around 100 nm and free from secondary phase. Regarding the dielectric measurements, the samples showed satisfactory dielectric losses as well as remarkable diffusivity in the dielectric curves. Moreover, ferroelectric hysteresis measurements showed that samples produced by the HPD technique can stand high electric fields necessary to switch the polarization and thus to induce piezoelectric activity. Our results demonstrated clearly the viability of the proposed method to produce nanograined ferroelectric bulk ceramics, then opening the possibility of developing new technologies.
Resumo:
Cooperative spontaneous emission of a single photon from a cloud of N atoms modifies substantially the radiation pressure exerted by a far-detuned laser beam exciting the atoms. On one hand, the force induced by photon absorption depends on the collective decay rate of the excited atomic state. On the other hand, directional spontaneous emission counteracts the recoil induced by the absorption. We derive an analytical expression for the radiation pressure in steady-state. For a smooth extended atomic distribution we show that the radiation pressure depends on the atom number via cooperative scattering and that, for certain atom numbers, it can be suppressed or enhanced. Cooperative scattering of light by extended atomic clouds can become important in the presence of quasi-resonant light and could be addressed in many cold atoms experiments.
Resumo:
Oxidation of cholesterol (Ch) by a variety of reactive oxygen species gives rise mainly to hydroperoxides and aldehydes. Despite the growing interest in Ch-oxidized products, the detection and characterization of these products is still a matter of concern. In this work, the main Ch-oxidized products, namely, 3 beta-hydroxycholest-5-ene-7 alpha-hydroperoxide (7 alpha-OOH), 3 beta-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH), and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld), were detected in the same analysis using high-performance liquid chromatography (HPLC) coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry. The use of selected reaction monitoring mode (SRM) allowed a sensitive detection of each oxidized product, while the enhanced product ion mode (EPI) helped to improve the confidence of the analyses. Isotopic labeling experiments enabled one to elucidate mechanistic features during fragmentation processes. The characteristic fragmentation pattern of Ch-oxidized products is the consecutive loss of 1120 molecules, yielding cationic fragments at m/z 401, 383, and 365. Homolytic scissions of the peroxide bond are also seen. With (18)O-labeling approach, it was possible to establish a fragmentation order for each isomer. The SRM transitions ratio along with EPI and (18)O-labeled experiments give detailed information about differences for water elimination, allowing a proper discrimination between the isomers:Phis is of special interest considering the emerging role of Ch-oxidized products in the development of diseases.
Resumo:
The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for (lie ionization of the compounds. [it our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed: these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second P-O-phenol bonds, eventually leading to the formation of phenol, Phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different Structure and the products detected suggest scission of either the P-O-hydrocarbon or one of the P-O-phenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this project is to provide an explanation for recently obtained binding constants for two similar guest molecules, NDMG and N-MAP, with a p-sulfonatocalix[6]arene host in ammonium acetate buffer. This work was done primarily using pressure perturbation calorimetry, which is a technique that determines the coefficient of thermal expansion, α, which is in turn related to the solute molecule's effect on the order of the surrounding water molecules. A series of experiments were designed to test the effects of suspected confounding variables on the validity of PPC data. PPC was then used to study NDMG and N-MAP in ammonium acetate buffer. NDMG exhibited a minimum in α as function of temperature, while N-MAP did not. This difference was theorized to be due to the formation of an intramolecular hydrogen bond in monocationic NDMG that would lower the heat capacity of the molecule and better distribute the molecule's charge. Computational work and nuclear magnetic resonance spectroscopy confirmed that monocationic, ring-closed NDMG has less concentrated charge and more constrained motion than monocationic, ring-open NDMG. This evidence supports the theory that monocationic NDMG forms an intramolecular hydrogen bond and that this may be responsible for the minimum in α. This difference may explain the differences in binding constants between NDMG and N-MAP.