995 resultados para substrate noise coupling
Resumo:
Defining types of seafloor substrate and relating them to the distribution of fish and invertebrates is an important but difficult goal. An examination of the processing steps of a commercial acoustics analyzing software program, as well as the data values produced by the proprietary first echo measurements, revealed potential benef its and drawbacks for distinguishing acoustically distinct seafloor substrates. The positive aspects were convenient processing steps such as gain adjustment, accurate bottom picking, ease of bad data exclusion, and the ability to average across successive pings in order to increase the signal-to-noise ratio. A noteworthy drawback with the processing was the potential for accidental inclusion of a second echo as if it were part of the first echo. Detailed examination of the echogram measurements quantified the amount of collinearity, revealed the lack of standardization (subtraction of mean, division by standard deviation) before principal components analysis (PCA), and showed correlations of individual echogram measurements with depth and seafloor slope. Despite the facility of the software, these previously unknown processing pitfalls and echogram measurement characteristics may have created data artifacts that generated user-derived substrate classifications, rather than actual seafloor substrate types.
Resumo:
Understanding the interactions between kelp beds and nearshore fish is essential because anthropogenic changes and natural variability in these beds may affect available habitat for fishes. In this study fish communities were investigated in south-central Alaska kelp beds characterized by a range of substrate complexity and varying densities of both perennial understory kelps and annual canopy kelps. Many of the observed fish species, as well as understory and canopy kelps, were positively associated with structurally complex substratum. Targeted canopy and understory kelp beds supported seasonal populations of adult and juvenile Pacific cod (Gadus macrocephalus), rockfishes (Sebastes spp.), and year-round populations of greenlings (Hexagrammos spp.). Monthly changes in kelp and fish communities ref lected seasonal changes; the densities of some species were greatest during periods with higher temperatures. This work illustrates the importance of structurally complex kelp beds with persistent understory kelp populations as important fish habitat for several commercially and recreationally important fishes.
Resumo:
Abundance indices derived from fishery-independent surveys typically exhibit much higher interannual variability than is consistent with the within-survey variance or the life history of a species. This extra variability is essentially observation noise (i.e. measurement error); it probably reflects environmentally driven factors that affect catchability over time. Unfortunately, high observation noise reduces the ability to detect important changes in the underlying population abundance. In our study, a noise-reduction technique for uncorrelated observation noise that is based on autoregressive integrated moving average (ARIMA) time series modeling is investigated. The approach is applied to 18 time series of finfish abundance, which were derived from trawl survey data from the U.S. northeast continental shelf. Although the a priori assumption of a random-walk-plus-uncorrelated-noise model generally yielded a smoothed result that is pleasing to the eye, we recommend that the most appropriate ARIMA model be identified for the observed time series if the smoothed time series will be used for further analysis of the population dynamics of a species.
Resumo:
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.
Resumo:
Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like superconducting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.