970 resultados para strengths
Resumo:
We report measurements of ultrahigh magnetic fields produced during intense (similar to10(20) Wcm(-2) mum(2)) laser interaction experiments with solids. We show that polarization measurements of high-order vuv laser harmonics generated during the interaction (up to the 15th order) suggest the existence of magnetic field strengths of 0.7+/-0.1 GG in the overdense plasma. Measurements using higher order harmonics indicate that denser regions of the plasma can be probed. This technique may be useful for measurements of multi-GG level magnetic fields which are predicted to occur at even higher intensities.
Resumo:
Recent research has generally shown that a small change in the number of species in a food web can have consequences both for community structure and ecosystem processes. However 'change' is not limited to just the number of species in a community, but might include an alteration to such properties as precipitation, nutrient cycling and temperature. How such changes might affect species interactions is important, not just through the presence or absence of interactions, but also because the patterning of interaction strengths among species is intimately associated with community stability. Interaction strengths encompass such properties as feeding rates and assimilation efficiencies, and encapsulate functionally important information with regard to ecosystem processes. Interaction strengths represent the pathways and transfer of energy through an ecosystem. We review the best empirical data available detailing the frequency distribution of interaction strengths in communities. We present the underlying (but consistent) pattern of species interactions and discuss the implications of this patterning. We then examine how such a basic pattern might be affected given various scenarios of 'change' and discuss the consequences for community stability and ecosystem functioning.
Resumo:
Recent research has generally shown that a small change in the number of species in a food web can have consequences both for community structure and ecosystem processes. However 'change' is not limited to just the number of species in a community, but might include an alteration to such properties as precipitation, nutrient cycling and temperature, all of which are correlated with productivity. Here we argue that predicted scenarios of global change will result in increased plant productivity. We model three scenarios of change using simple Lotka-Volterra dynamics, which explore how a global change in productivity might affect the strength of local species interactions and detail the consequences for community and ecosystem level stability. Our results indicate that (i) at local scales the average population size of consumers may decline because of poor quality food resources, (ii) that the strength of species interactions at equilibrium may become weaker because of reduced population size, and (iii) that species populations may become more variable and may take longer to recover from environmental or anthropogenic disturbances. At local scales interaction strengths encompass such properties as feeding rates and assimilation efficiencies, and encapsulate functionatty important information with regard to ecosystem processes. Interaction strengths represent the pathways and transfer of energy through an ecosystem. We examine how such local patterns might be affected given various scenarios of 'global change' and discuss the consequences for community stability and ecosystem functioning. (C) 2004 Elsevier GmbH. All rights reserved.
Resumo:
Empirical studies have shown that, in real ecosystems, species-interaction strengths are generally skewed in their distribution towards weak interactions. Some theoretical work also suggests that weak interactions, especially in omnivorous links, are important for the local stability of a community at equilibrium. However, the majority of theoretical studies use uniform distributions of interaction strengths to generate artificial communities for study. We investigate the effects of the underlying interaction-strength distribution upon the return time, permanence and feasibility of simple Lotka-Volterra equilibrium communities. We show that a skew towards weak interactions promotes local and global stability only when omnivory is present. It is found that skewed interaction strengths are an emergent property of stable omnivorous communities, and that this skew towards weak interactions creates a dynamic constraint maintaining omnivory. Omnivory is more likely to occur when omnivorous interactions are skewed towards weak interactions. However, a skew towards weak interactions increases the return time to equilibrium, delays the recovery of ecosystems and hence decreases the stability of a community. When no skew is imposed, the set of stable omnivorous communities shows an emergent distribution of skewed interaction strengths. Our results apply to both local and global concepts of stability and are robust to the definition of a feasible community. These results are discussed in the light of empirical data and other theoretical studies, in conjunction with their broader implications for community assembly.
Resumo:
The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na2SO4) after exposure to elevated temperatures ranging from 200 to 800 °C with an increment of 200 °C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na2SO4 activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 °C than Portland cement system as its relative strengths are superior. The finer slag and higher Na2SO4 concentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.
Resumo:
A study undertaken at the University of Liverpool has investigated the potential for using recycled demolition aggregate in the manufacture of precast concrete building blocks. Recycled aggregates derived from construction and demolition waste (C&DW) can be used to replace quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The manufacturing process used in factories, for large-scale production, involves a “vibro-compaction” casting procedure, using a relatively dry concrete mix with low cement content (˜100 kg/m3). Trials in the laboratory successfully replicated the manufacturing process using a specially modified electric hammer drill to compact the concrete mix into oversize steel moulds to produce blocks of the same physical and mechanical properties as the commercial blocks. This enabled investigations of the effect of partially replacing newly quarried with recycled demolition aggregate on the compressive strength of building blocks to be carried out in the laboratory. Levels of replacement of newly quarried with recycled demolition aggregate have been determined that will not have significant detrimental effect on the mechanical properties. Factory trials showed that there were no practical problems with the use of recycled demolition aggregate in the manufacture of building blocks. The factory strengths obtained confirmed that the replacement levels selected, based on the laboratory work, did not cause any significant strength reduction, i.e. there was no requirement to increase the cement content to maintain the required strength, and therefore there would be no additional cost to the manufacturers if they were to use recycled demolition aggregate for their routine concrete building block production.
Resumo:
The early-age strength development of concrete containing slag cement has been investigated to give guidance for its use in fast-track construction. Measurements of temperature rise under adiabatic conditions have shown that high levels of slag cement-for example, 70% of the total binder-are required to obtain a significant reduction in the peak temperature rise. Despite these temperature rises being lower than those for portland cement mixtures, however the early-age strength under adiabatic conditions of slag cement concrete can be as high as 250% of the strength of companion cubes cured at 20 degrees C (68 degrees F). The maturity and, hence, strength development were calculated from the adiabatic temperature histories based on several Maturity functions available in the literature. The predicted strength development with age was compared with the experimental results. Maturity functions that take into account the lower ultimate strengths obtained at elevated curing temperatures were found to be better at predicting the strength development.
Resumo:
Considerable evidence has accumulated on the association between pregnancy-specific stress and adverse birth outcomes with an increasing number of measures of pregnancy-specific stress being developed internationally. However, the introduction of these measures has not always been theoretically or psychometrically grounded, resulting in questions about the quality and direction of such research. This review summarizes evidence on the reliability and validity of pregnancy-specific stress measures identified between 1980 and October 2010. Fifteen pregnancy-specific stress measures were identified. Cronbach’s alpha coefficient ranged from 0.51–0.96 and predictive validity data on preterm birth were reported for five measures. Convergent validity data suggest that pregnancy-specific stress is related to, but distinct from, global stress. Findings from this review consolidate current knowledge on pregnancy-specific stress as a consistent predictor of premature birth. This review also advances awareness of the range of measures of pregnancy-specific stress and documents their strengths and limitations based on published reliability and validity data. Careful consideration needs to be given as to which measures to use in future research to maximize the development of stress theory in pregnancy and appropriate interventions for women who experience stress in pregnancy. An international, strategic collaboration is recommended to advance knowledge in this area of study.
Resumo:
A parametric study of cold-formed steel sections with web openings subjected to web crippling was undertaken using finite element analysis, to investigate the effects of web holes and cross-section sizes on the web crippling strengths of channel sections subjected to web crippling under both interior-two-flange (ITF) and end-two-flange (ETF) loading conditions. In both loading conditions, the hole was centred beneath the bearing plate. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the flat depth of the web, and the ratio of the length of bearing plates to the flat depth of the web. In this paper, design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.
Resumo:
We have determined photoionization spectra of Ar with excitation of the 3p(4)(P-3)4p states emphasizing the effects of two different classes of Ar+ spin-orbit interactions. The spin-orbit splitting of each Ar+ state adequately describes the resonant excitation of the quartet states of Ar+, and gives Ar photoionization cross sections with excitation of the 3p4(3P)4p P-2(3/2)o and P-4(5/2)o levels of Ar+ in sufficiently good agreement with experiment to identify the observed resonances and to estimate the excitation strengths. In addition, we demonstrate the importance of spin-orbit induced mixing of different Ar+ LS-coupled states for observables such as the alignment of the 3p(4)(P-3)4p P-4(5/2)o level and the excitation of Rydberg series converging to the 3p(4)(P-3)4p S-2(o) and S-4(o) thresholds.