988 resultados para spatial dispersion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1999, NOAA’s Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) has been working with federal and territorial partners to characterize monitor and assess the status of the marine environment in southwestern Puerto Rico. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort of the La Parguera region in southwestern Puerto Rico was conducted through partnerships with the University of Puerto Rico (UPR) and the Puerto Rico Department of Natural and Environmental Resources (DNER). Project funding was primarily provided by NOAA CRCP and CCMA. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem in the La Parguera region have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a suite of hurricanes, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem several activities are underway or have been implemented to manage the marine resources. These efforts have been supported by the CREM project by identifying marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first seven years of fish survey data (2001-2007) and associated characterization of the benthos. The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure across the seascape including fringing mangroves, inner, middle, and outer reef areas, and open ocean shelf bank areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hawaii’s coastal marine resources have declined dramatically over the past 100 years due to multiple anthropogenic stressors including overfishing, coastal development, pollution, overuse, invasive species and climate change. It is now becoming evident that ecosystem-based management, in the form of marine protected areas (MPAs), is necessary to conserve biodiversity, maintain viable fisheries, and deliver a broad suite of ecosystem services. Over the past four decades, Hawaii has developed a system of MPAs to conserve and replenish marine resources around the state. These Marine Life Conservation Districts (MLCDs) vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Branch used digital benthic habitat maps coupled with comprehensive ecological studies between 2002 and 2004 to evaluate the efficacy of all existing MLCDs using a spatially-explicit stratified random sampling design. The results from this work have shown that areas fully protected from fishing had higher fish biomass, larger overall fish size, and higher biodiversity than adjacent areas of similar habitat quality. Other key findings demonstrated that top predators and other important fisheries species were more abundant and larger in the MPAs, illustrating the effectiveness of these closures in conserving these populations. Habitat complexity, protected area size and habitat diversity were the major factors in determining effectiveness among MPAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bottlenose dolphins (Tursiops truncatus) inhabit estuarine waters near Charleston, South Carolina (SC) feeding, nursing and socializing. While in these waters, dolphins are exposed to multiple direct and indirect threats such as anthropogenic impacts (egs. harassment with boat traffic and entanglements in fishing gear) and environmental degradation. Bottlenose dolphins are protected under the Marine Mammal Protection Act of 1972. Over the years, the percentage of strandings in the estuaries has increased in South Carolina and, specifically, recent stranding data shows an increase in strandings occurring in Charleston, SC near areas of residential development. During the same timeframe, Charleston experienced a shift in human population towards the coastline. These two trends, rise in estuarine dolphin strandings and shift in human population, have raised questions on whether the increase in strandings is a result of more detectable strandings being reported, or a true increase in stranding events. Using GIS, the trends in strandings were compared to residential growth, boat permits, fishing permits, and dock permits in Charleston County from 1994-2009. A simple linear regression analysis was performed to determine if there were any significant relationships between strandings, boat permits, commercial fishing permits, and crabpot permits. The results of this analysis show the stranding trend moves toward Charleston Harbor and adjacent rivers over time which suggests the increase in strandings is related to the strandings becoming more detectable. The statistical analysis shows that the factors that cause human interaction strandings such as boats, commercial fishing, and crabpot line entanglements are not significantly related to strandings further supporting the hypothesis that the increase in strandings are due to increased observations on the water as human coastal population increases and are not a natural phenomenon. This study has local and potentially regional marine spatial planning implications to protect coastal natural resources, such as the bottlenose dolphin, while balancing coastal development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2001, biannual fish and habitat monitoring has been conducted for the shallow (> 30 m), colonized pavement and gorgonian dominated Buck Island Reef National Monument (BIRNM) St. Croix, USVI and adjacent waters. during October, 2005, widespread coral bleaching was observed within the ∼50 square-kilometer study area that was preceded by 10 wks of higher than average water temperatures (28.9–30.1 °C). Random transects (100 square meters) were conducted on linear reefs, patch reefs, bedrock, pavement, and scattered coral/rock habitats during October 2005, and April and October 2006, and species specific bleaching patterns were documented. During October 2005 approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching. Coral cover for Montastraea annularis and species of the genus Agaricia were the most affected, while other species exhibited variability in their susceptibility to bleaching. Bleaching was evident at all depths (1.5–28 m), was negatively correlated with depth, and positively correlated with habitat complexity. Bleaching was less prevalent at all depths and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006. Four species and one genus did not exhibit signs of bleaching throughout the study period (Dendrogyra cylindrus, Eusmilia fastigata, Mussa angulosa, Mycetophyllia aliciae, Scolymia spp.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited information currently exists on the recovery periods of bleached corals as well as the spatial extent, causative factors, and the overall impact of bleaching on coral reef ecosystems. During October, 2005, widespread coral bleaching was observed within Buck Island Reef National Monument (BUIS) St. Croix, USVI. The bleaching event was preceded by 10 weeks of higher than average water temperatures (28.9-30.1°C). Random transects (100 square meters) over hard bottom habitats (N=94) revealed that approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching; species-specific bleaching patterns were variable throughout the study area. Coral cover for Montastraea annularisand species of the genus Agariciawere the most affected, while other species exhibited variability to bleaching. Although a weak but significant negative relationship (r2=0.10, P=0.0220) was observed, bleaching was evident at all depths (1.5-28 m). Bleaching was spatially autocorrelated (P=0.001) and hot-spot analysis identified a cluster of high bleaching stations northeast of Buck Island. Bleaching was significantly reduced within all depth zones and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006.