993 resultados para space station
Resumo:
Nesta dissertação são analisados métodos de localização baseados na rede, com destaque para os métodos de correlação de assinaturas de rádio-frequência (DCM - Database Correlation Methods). Métodos baseados na rede não requerem modificações nos terminais móveis (MS - Mobile Stations), sendo portanto capazes de estimar a localização de MS legados, i.e., sem suporte específico a posicionamento. Esta característica, associada a alta disponibilidade e precisão dos métodos DCM, torna-os candidatos viáveis para diversas aplicações baseadas em posição, e em particular para a localização de chamadas para números de emergência - polícia, defesa civil, corpo de bombeiros, etc. - originadas de telefones móveis celulares. Duas técnicas para diminuição do tempo médio para produção de uma estimativa de posição são formuladas: a filtragem determinística e a busca otimizada utilizando algoritmos genéticos. Uma modificação é realizada nas funções de avaliação utilizadas em métodos DCM, inserindo um fator representando a inacurácia intrínseca às medidas de nível de sinal realizadas pelos MS. As modificações propostas são avaliadas experimentalmente em redes de telefonia móvel celular de segunda e terceira gerações em ambientes urbanos e suburbanos, assim como em redes locais sem fio em ambiente indoor. A viabilidade da utilização de bancos de dados de correlação (CDB - Correlation Database) construídos a partir de modelagem de propagação é analisada, bem como o efeito da calibração de modelos de propagação empíricos na precisão de métodos DCM. Um dos métodos DCM propostos, utilizando um CDB calibrado, teve um desempenho superior ao de vários outros métodos DCM publicados na literatura, atingindo em área urbana a precisão exigida dos métodos baseados na rede pela regulamentação FCC (Federal Communications Commission) para o serviço E911 (Enhanced 911 ).
Resumo:
No presente trabalho foram desenvolvidos modelos de classificação aplicados à mineração de dados climáticos para a previsão de eventos extremos de precipitação com uma hora de antecedência. Mais especificamente, foram utilizados dados observacionais registrados pela estação meteorológica de superfície localizada no Instituto Politécnico da Universidade do Estado do Rio de Janeiro em Nova Friburgo RJ, durante o período de 2008 a 2012. A partir desses dados foi aplicado o processo de Descoberta de Conhecimento em Banco de Dados (KDD Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós processamento dos dados. Com base no uso de algoritmos de Redes Neurais Artificiais e Árvores de Decisão para a extração de padrões que indicassem um acúmulo de precipitação maior que 10 mm na hora posterior à medição das variáveis climáticas, pôde-se notar que a utilização da observação meteorológica de micro escala para previsões de curto prazo é suscetível a altas taxas de alarmes falsos (falsos positivos). Para contornar este problema, foram utilizados dados históricos de previsões realizadas pelo Modelo Eta com resolução de 15 km, disponibilizados pelo Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais CPTEC/INPE. De posse desses dados, foi possível calcular os índices de instabilidade relacionados à formação de situação convectiva severa na região de Nova Friburgo e então armazená-los de maneira estruturada em um banco de dados, realizando a união entre os registros de micro e meso escala. Os resultados demonstraram que a união entre as bases de dados foi de extrema importância para a redução dos índices de falsos positivos, sendo essa uma importante contribuição aos estudos meteorológicos realizados em estações meteorológicas de superfície. Por fim, o modelo com maior precisão foi utilizado para o desenvolvimento de um sistema de alertas em tempo real, que verifica, para a região estudada, a possibilidade de chuva maior que 10 mm na próxima hora.