982 resultados para solid state sodium ion electrolytes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The iodide-containing layered double hydroxides (LDHs) of Mg and Zn with AI crystallize by the inclusion of extensive positional disorder of I- ions in the interlayer region. I- ion given its poor charge to size ratio can neither screen effectively the positive charge nor participate in H-bonding with the metal hydroxide layers. Thereby the I- ions are not stabilized in sites close to the seat of positive charge of the metal hydroxide layers (6c), nor in sites that facilitate H-bonding (3b or 18h). On the other hand, OH- from water can do both and effectively displaces I- from the interlayer. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear saturated stearic acid and the bent mono-unsaturated oleic acid do not mix and form solid solutions. However, the zinc salts of these acids can. From X-ray diffraction and DSC measurements we show that the layered zinc stearate and zinc oleate salts form a homogeneous solid solution at all composition ratios. The solid solutions exhibit a single melting endotherm, with the melting temperature varying linearly with composition but with the enthalpy change showing a minimum. By monitoring features in the infrared spectra that are characteristic of the global conformation of the hydrocarbon chain, and hence can distinguish between stearate and oleate chains, it is shown that solid solution formation is realized by the introduction of gauche defects in a fraction of the stearate chains that are then no longer linear. This fraction increases with oleate concentration. It has also been possible from the spectroscopic measurements to establish a quantitative relation between molecular conformational order and the thermodynamic enthalpy of melting of the solid solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermentable components of municipal solid wastes (MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash and paper are generated in large quantities at various pockets of the city. These form potential feedstocks for decentralized biogas plants to be operated in the vicinity. We characterized the fermentation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using the solid-state stratified bed (SSB) process in a laboratory study. FVW and leaf litter (papermulberry leaves) decomposed almost completely while paddy straw, sugarcane trash, sugarcane bagasse and photocopying paper decomposed to a lower extent. In the SSB process between 50-60% of the biological methane potential (BMP) could be realized. Observations revealed that the SSB process needs to be adapted differently for each of the feedstocks to obtain a higher gas recovery. Bagasse produced the largest fraction of anaerobic compost (fermentation residue) and has the potential for reuse in many ways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water-gas shift (WGS) reaction was carried out in the presence of Pd and Pt substituted nanocrystalline ceria catalysts synthesized by solution combustion technique. The catalysts were characterized by powder XRD and XPS. The noble metals were found to be present in ionic form substituted for the cerium atoms. The catalysts showed highactivity for the WGS reaction with high conversions below 250 degrees C. The products of reaction were only carbon dioxide and hydrogen, and no hydrocarbons were observed even in trace quantities. The reactions were carried out with different amounts of noble metal ion substitution and 2% Pt substituted ceria was found to be the best catalyst. The various possible mechanisms for the reaction were proposed and tested for their consistency with experimental data. The dual site mechanism best described the kinetics of the reaction and the corresponding rate parameters were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noble metal substituted ionic catalysts were synthesized by solution combustion technique. The compounds were characterized by X-ray diffraction, FT-Raman spectroscopy, and X-ray photoelectron spectroscopy. Zirconia supported compounds crystallized in tetragonal phase. The solid solutions of ceria with zirconia crystallized in fluorite structure. The noble metals were substituted in ionic form.The water-gas shift reaction was carried out over the catalysts.Negligible conversions were observed with unsubstituted compounds. The substitution of a noble metal ion was found to enhance the reaction rate. Equilibrium conversion was obtained below 250 degrees C in the presence of Pt ion substituted compounds. The formation of Bronsted acid-Bronsted base pairs was proposed to explain the activity of zirconia catalysts. The effect of oxide ion vacancies on the reactions over substituted ceria-zirconia solid solutions was established. (c)2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeO2-SnO2 solid solution has been reported to possess high oxygen storage/release property which possibly originates from local structural distortion. We have performed first-principles based density functional calculations of Ce1-xSnxO2 structure (x=0, 0.25, 0.5, 1) to understand its structural stability in fluorite in comparison to rutile structure of the other end-member SnO2, and studied the local structural distortion induced by the dopant Sn ion. Analysis of relative energies of fluorite and rutile phases of CeO2, SnO2, and Ce1-xSnxO2 indicates that fluorite structure is the most stable for Ce1-xSnxO2 solid solution. An analysis of local structural distortions reflected in phonon dispersion show that SnO2 in fluorite structure is highly unstable while CeO2 in rutile structure is only weakly unstable. Thus, Sn in Ce1-xSnxO2-fluorite structure is associated with high local structural distortion whereas Ce in Ce1-xSnxO2-rutile structure, if formed, will show only marginal local distortion. Determination of M-O (M=Ce or Sn) bond lengths and analysis of Born effective charges for the optimized structure of Ce1-xSnxO2 show that local coordination of these cations changes from ideal eightfold coordination expected of fluorite lattice to 4+4 coordination, leading to generation of long and short Ce-O and Sn-O bonds in the doped structure. Bond valence analyses for all ions show the presence of oxygen with bond valence similar to 1.84. These weakly bonded oxygen ions are relevant for enhanced oxygen storage/release properties observed in Ce1-xSnxO2 solid solution. (C) 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt2+ ion dispersed in CeO2, Ce1-xTixO2-delta and TiO2 have been tested for preferential oxidation of carbon monoxide (PROX) in hydrogen rich stream. It is found that Pt2+ substituted CeO2 and Ce(1-x)TixO(2-delta) in the form of solid solution Ce0.98Pt0.02O2-delta and Ce0.83Ti0.15Pt0.02O2-delta are highly CO selective low temperature PROX catalysts in hydrogen rich stream. Just 15% of Ti substitution in CeO2 improves the overall PROX activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO42- or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flow-rate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 degrees C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO42- or Mo(VI) ions. The effect of poisoning of acid sites of SO42- or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT-PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT-PSSA composite also helps reducing Nation content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT-PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT-PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT-PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm(-2) at a load current-density of 1800 mA cm(-2) with Nation content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT-PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT-PSSA composite also helps reducing Nation content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT-PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT-PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT-PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm(-2) at a load current-density of 1800 mA cm(-2) with Nation content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new soft-chemical transformation of layered perovskite oxides is described wherein K2O is sequentially extracted from the Ruddlesden-Popper (R-P) phase, K2La2Ti3O10 (I), yielding novel anion-deficient KLa2Ti3O9.5 (II) and La2Ti3O9 (III). The transformation occurs in topochemical reactions of the R-P phase I with PPh4Br and PBu4Br (Ph = phenyl; Bu = n-butyl). The mechanism involves the elimination of KBr accompanied by decomposition of PR4+ (R = phenyl or n-butyl) that extracts oxygen from the titanate. Analysis of the organic products of decomposition reveals formation of Ph3PO, Ph3P, and Ph-Ph for R = phenyl, and Bu3PO, Bu3P along with butane, butene, and octane for R = butyl. The inorganic oxides II and III crystallize in tetragonal structures (II: P4/mmm, a = 3.8335(1) angstrom, c = 14.334(1) angstrom; III: /4/ mmm, a = 3.8565(2) angstrom, c = 24.645(2) angstrom) that are related to the parent R-P phase. II is isotypic with the Dion-Jacobson phase, RbSr2Nb3O10, while III is a unique layered oxide consisting of charge-neutral La2Ti3O9 anion-deficient perovskite sheets stacked one over the other without interlayer cations. Interestingly, both II and III convert back to the parent R-P phase in a reaction with KNO3. While transformations of the R-P phases to other related layered/three-dimensional perovskite oxides in ion-exchange/metathesis/dehydration/reduction reactions are known, the simultaneous and reversible extraction of both cations and anions in the conversions K2La2Ti3O10 reversible arrow KLa2Ti3O9.5 reversible arrow La2Ti3O9 is reported here for the first time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.