967 resultados para solar system : formation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ice supersaturation (ISS) in the upper troposphere and lower stratosphere is important for the formation of cirrus clouds and long-lived contrails. Cold ISS (CISS) regions (taken here to be ice-supersaturated regions with temperature below 233 K) are most relevant for contrail formation.We analyse projected changes to the 250 hPa distribution and frequency of CISS regions over the 21st century using data from the Representative Concentration Pathway 8.5 simulations for a selection of Coupled Model Intercomparison Project Phase 5 models. The models show a global-mean, annual-mean decrease in CISS frequency by about one-third, from 11 to 7% by the end of the 21st century, relative to the present-day period 1979–2005. Changes are analysed in further detail for three subregions where air traffic is already high and increasing (Northern Hemisphere mid-latitudes) or expected to increase (tropics and Northern Hemisphere polar regions). The largest change is seen in the tropics, where a reduction of around 9 percentage points in CISS frequency by the end of the century is driven by the strong warming of the upper troposphere. In the Northern Hemisphere mid-latitudes the multi-model-mean change is an increase in CISS frequency of 1 percentage point; however the sign of the change is dependent not only on the model but also on latitude and season. In the Northern Hemisphere polar regions there is an increase in CISS frequency of 5 percentage points in the annual mean. These results suggest that, over the 21st century, climate change may have large impacts on the potential for contrail formation; actual changes to contrail cover will also depend on changes to the volume of air traffic, aircraft technology and flight routing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing research concern on how service ecosystems form and interact. This research thus aims to explore the service ecosystem formation and interaction as well as its underlying nature of value co-creation. This work develops an initial conceptual framework for assessing service system interactions that includes the various stages of value co-creation within ecosystem context. How the conceptual framework will further be developed and future plan are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined influences of the westerly phase of the quasi-biennial oscillation (QBO-W) and solar maximum (Smax) conditions on the Northern Hemisphere extratropical winter circulation are investigated using reanalysis data and Center for Climate System Research/National Institute for Environmental Studies chemistry climate model (CCM) simulations. The composite analysis for the reanalysis data indicates strengthened polar vortex in December followed by weakened polar vortex in February–March for QBO-W during Smax (QBO-W/Smax) conditions. This relationship need not be specific to QBO-W/Smax conditions but may just require strengthened vortex in December, which is more likely under QBO-W/Smax. Both the reanalysis data and CCM simulations suggest that dynamical processes of planetary wave propagation and meridional circulation related to QBO-W around polar vortex in December are similar in character to those related to Smax; furthermore, both processes may work in concert to maintain stronger vortex during QBO-W/Smax. In the reanalysis data, the strengthened polar vortex in December is associated with the development of north–south dipole tropospheric anomaly in the Atlantic sector similar to the North Atlantic oscillation (NAO) during December–January. The structure of the north–south dipole anomaly has zonal wavenumber 1 (WN1) component, where the longitude of anomalous ridge overlaps with that of climatological ridge in the North Atlantic in January. This implies amplification of the WN1 wave and results in the enhancement of the upward WN1 propagation from troposphere into stratosphere in January, leading to the weakened polar vortex in February–March. Although WN2 waves do not play a direct role in forcing the stratospheric vortex evolution, their tropospheric response to QBO-W/Smax conditions appears to be related to the maintenance of the NAO-like anomaly in the high-latitude troposphere in January. These results may provide a possible explanation for the mechanisms underlying the seasonal evolution of wintertime polar vortex anomalies during QBO-W/Smax conditions and the role of troposphere in this evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. This study evaluated histopathologically the response of pulp and periradicular tissues after pulp capping with an all-in-one self-etching adhesive system in dogs` teeth. Study design. Forty teeth of 4 dogs were assigned to 3 groups according to the pulp capping material: G1 (n = 20): self-etching adhesive system; G2 (n = 10): Ca(OH)(2); G3 (n = 10): zinc oxide-eugenol. The animals were killed 7 and 70 days after pulp capping. The pieces containing the pulp-capped teeth were removed and processed for histologic analysis. Results. At 7 days, no dentin bridge formation was observed; G1 and G3 exhibited inflammatory pulpal alterations, whereas G2 presented only mild inflammatory infiltrate in the pulp tissue adjacent to the capping material, the remainder being intact. At 70 days, no specimen in G1 or G3 presented dentin bridge formation. The remaining pulp tissue exhibited severe inflammatory alterations and areas of necrosis. In G2, all specimens showed dentin bridge formation and absence of inflammation and mineralized tissue resorption. No bacteria were identified using Brown and Brenn staining techniques in all 3 groups at any observation period. Conclusion. According to the conditions of this study, direct pulp capping with the self-etching adhesive system did not allow pulp tissue repair and failed histopathologically in 100% of the cases. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e34-e40)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of old open clusters outside the solar circle can bring constraints on formation scenarios of the outer disc. In particular, accretion of dwarf galaxies has been proposed as a likely mechanism in the area. We use BVI photometry for determining fundamental parameters of the faint open cluster ESO 92-SC05. Colour-magnitude diagrams are compared with Padova isochrones, in order to derive age, reddening and distance. We derive a reddening E(B - V) = 0.17, and an old age of similar to 6.0 Gyr. It is one of the rare open clusters known to be older than 5 Gyr. A metallicity of Z similar to 0.004 or [M/H] similar to -0.7 is found. The rather low metallicity suggests that this cluster might be the result of an accretion episode of a dwarf galaxy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of self-consistent three-dimensional magnetohydrodynamics (MHD) numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional MHD equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20 G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. For the maximum magnetic intensity simulated of 20 G and solar coronal base density, the wind velocity reaches values of similar to 1000 km s(-1) at r similar to 20r(0) and a maximum temperature of similar to 6 x 10(6) K at r similar to 6r(0). The increase of the field intensity generates a larger ""dead zone"" in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than similar to 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B(0) = 20 G the system recover back to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We analyze the influence of gamma in our results and we show that it is also important in determining the wind structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present work was to induce somatic embryogenesis from zygotic embryos of Passiflora cincinnata Masters. Zygotic embryos formed calli on media with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 mu M benzyladenine (BA) after 30 days of in vitro culture. A concentration of 18.1 mu M 2,4-D resulted in the largest number of somatic embryos. Embryogenic calli were yellowish and friable, forming whitish proembryogenic masses. Morphologically, embryogenic cells were small and had large nuclei and dense cytoplasm, whereas non-embryogenic cells were elongated, with small nuclei and less dense cytoplasm. Calli cultured under white light on basal Murashige and Skoog`s medium with activated charcoal produced embryos in all developmental stages. There were differences among the treatments, with some leading to the production of calli with embryos and some only to callus formation. Some abnormalities were associated with somatic embryos, including fused axes, fused cotyledons and polycotyledonary embryos. Production of secondary somatic embryos occurred in the first cycle of primary embryo development. Secondary embryos differentiated from the surface of the protodermal layer of primary embryos with intense cell proliferation, successive mitotic divisions in the initial phase of embryoid development, and a vascular system formed with no connection to the parental tissue. This secondary embryogenic system of P. cincinnata is characterized by intense proliferation and maintenance of embryogenic competence after successive subcultures. This reproducible protocol opens new prospects for massive propagation and is an alternative to the current organogenesis-based transformation protocol.