975 resultados para soil water movement


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log(10)discharge-log(10)Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (< 1 to > 10(6) ha) and discharge (10(-5.7)-10(3.2) m(3) s(-1)). Linear regressions of log(10)Ca versus log(10)discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility. among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays. Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that cover crops can enhance soil nitrous oxide (N(2)O) emissions, but the magnitude of increase depends on the quantity and quality of the crop residues. Therefore, this study aimed to evaluate the effect of long-term (19 and 21 years) no-till maize crop rotations including grass [black oat (Avena strigosa Schreb)] and legume cover crops [vetch (Vigna sativa L), cowpea (Vigna unguiculata L. Walp), pigeon pea (Cajanus cajan L. Millsp.) and lablab (Dolichos lablab)] on annual soil N(2)O emissions in a subtropical Acrisol in Southern Brazil. Greater soil N(2)O emissions were observed in the first 45 days after the cover crop residue management in all crop rotations, varying from -20.2 +/- 1.9 to 163.9 +/- 24.3 mu g N m(-2) h(-1). Legume-based crop rotations had the largest cumulative emissions in this period, which were directly related to the quantity of N (r(2) = 0.60, p = 0.13)and inversely related to the lignin:N ratio(r(2) = 0.89,p = 0.01) of the cover crop residues. After this period, the mean fluxes were smaller and were closely related to the total soil N stocks (r(2) = 0.96, p = 0.002). The annual soil N(2)O emission represented 0.39-0.75% of the total N added by the legume cover crops. Management-control led soil variables such as mineral N (NO(3)(-) and NH(4)(+)) and dissolved organic C influenced more the N(2)O fluxes than environmental-related variables as water-filled pore space and air and soil temperature. Consequently, the synchronization between N mineralization and N uptake by plants seems to be the main challenge to reduce N(2)O emissions while maintaining the environmental and agronomic services provided by legume cover crops in agricultural systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports for the first time an estimation of the internal net joint forces and torques on adults` lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects` apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water`s depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (I) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO(2) during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 A degrees C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO(2) assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO(3)(-)-N in soil and nitrate (NO(3)(-)) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs(804-1622 kg N ha(-1)) greater than exported N (463-597 kg N ha(-1)). Hence, throughout the irrigation period, high NO(3)(-) concentrations (up to 388 mg L(-1) at T200) and DOC (up to 142 mg L(-1) at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis x urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (TBCA), bole growth, and net ecosystem production (NEP). Replicate plots within a single plantation were established at the midpoint of the rotation (end of year 3), with treatments of no additional fertilization or irrigation, heavy fertilization (to remove any nutrient limitation), irrigation (to remove any water limitation), and irrigation plus fertilization. Rainfall was unusually high in the first year (1769mm) of the experiment, and control plots had high rates of GPP (6.64 kg C m(-2) year(-1)), TBCA (2.14 kg C m(-2) year(-1)), and bole growth (1.81 kg C m(-2) year). Irrigation increased each of these rates by 15-17%. The second year of the experiment had average rainfall (1210 mm), and lower rainfall decreased production in control plots by 46% (GPP), 52% (TBCA), and 40% (bole growth). Fertilization treatments had neglible effects. The response to irrigation was much greater in the drier year, with irrigated plots exceeding the production in control plots by 83% (GPP), 239% (TBCA), and 24% (bole growth). Even though the rate of irrigation ensured no water limitation to tree growth, the high rainfall year showed higher production in irrigated plots for both GPP (38% greater than in drier year) and bole growth (23% greater). Varying humidity and supplies of water led to a range in NEP of 0.8-2.7 kg C m(-2) year. This difference between control and irrigated treatments, combined with differences between drier and wetter years, indicated a strong response of these Eucalyptus trees to both water supply and atmospheric humidity during the dry season. The efficiency of converting light energy into fixed carbon ranged from a low of 0.027 mol C to a high of 0.060 mol C per mol of absorbed photosynthetically active radiation (APAR), and the efficiency of bolewood production ranged from 0.78 to 1.98 g wood per MJ of APAR. Irrigation increased the efficiency of wood production per unit of water used from 2.55 kg wood m(-3) in the rainfed plot to 3.51 kg m(-3) in irrigated plots. Detailed information on the response of C budgets to environmental conditions and resource supplies will be necessary for accurate predictions of plantation yields across years and landscapes. (V) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased use of marginal quality water with drip irrigation requires sound fertigation practices that reconcile environmental concerns with viable crop production objectives. We conducted experiments to characterize dynamics and patterns of soil solution within wet bulb formed by drip irrigation. Time-domain reflectometry probes were used to monitor the distribution of potassium nitrate (KNO(3)) and water distribution from drippers discharging at constant flow rates of 2, 4 and 8 L h(-1) in soil-filled containers. Considering results from different profiles, we observed greater solute storage near the dripper decreasing gradually towards the wetting front. About half of the applied KNO(3) solution (48%) was stored in the first layer (0-0.10 m) for all experiments, 29% was stored in the next layer (0.10-0.20 m). Comparing different dripper flow rates, we observed higher solution storage for 4 L h(-1), with 45, 53 and 47% of applied KNO(3) solution accumulating in the first layer (0-0.10 m) for dripper flow rates of 2, 4 and 8 L h(-1), respectively. The results suggest that based on the volume and frequency used in this experiment, it would be advantageous to apply small amounts of solution at more frequent intervals to reduce deep percolation losses of applied water and solutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental results obtained from a greenhouse trial with common bean (Phaseolus vulgaris L) plants performed to test model hypotheses regarding the onset of limiting hydraulic conditions and the shape of the transpiration reduction curve in the falling rate phase are presented. According to these hypotheses based on simulations with an upscaled single-root model, the matric flux potential at the onset of limiting hydraulic conditions is as a function of root length density and potential transpiration rate, while the relative transpiration in the falling rate phase equals the relative matric flux potential. Transpiration of bean plants in water stressed pots with four different soils was determined daily by weighing and compared to values obtained from non-stressed pots. This procedure allowed determining the onset of the falling rate phase and corresponding soil hydraulic conditions. At the onset of the falling rate phase, the value of matric flux potential M(I) showed to differ in order of magnitude from the model predicted value for three out of four soils. This difference between model and experiment can be explained by the heterogeneity of the root distribution which is not considered by the model. An empirical factor to deal with this heterogeneity should be included in the model to improve predictions. Comparing the predictions of relative transpiration in the falling rate phase using a linear shape with water content, pressure head or matric flux potential, the matric flux potential based reduction function, in agreement with the hypothesis, showed the best performance, while the pressure head based equation resulted in the highest deviations between observed and predicted values of relative transpiration rates. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water use and crop coefficient for hybrid DKB 390. This work aims to characterize the water use of maize hybrid DKB 390 under suitable conditions of irrigation for both sufficient and below-optimal situations of nitrogen supply. Crop coefficient values for different stages are also presented as a result, in order to provide the basis for crop water budget and management throughout the cycle. A field experiment was carried Out during the main season, in which biomass, soil moisture, leaf area, climate data and light transmittance were evaluated. These have allowed deriving water balance, use and efficiency. The mentioned genotype requires around 600 nun for high yield targets, being less efficient when led under below-optimal nitrogen fertilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil compaction, reflected by high bulk density, is an environmental degradation process and new technologies are being developed for its detection. Despite the proven efficiency of remote sensing, it has not been widely used for soil density. Our objective was to evaluate the density of two soils: a Typic Quartzpisament (TQ) and a Rhodic Paleudalf (RP), using spectral reflectance obtained by a laboratory spectroradiometer between 450 and 2500 nm. Undisturbed samples were taken at two depths (0-20 and 60-80 cm), and were artificially compacted. Spectral data, obtained before and after compaction, were compared for both wet and dried compacted samples. Results demonstrated that soil density was greater in RP than in TQ at both depths due to its clayey texture. Spectral data detected high density (compacted) from low density (non-compacted) clayey soils under both wet and dry conditions. The detection of density in sandy soils by spectral reflectance was not possible. The intensity of spectral reflectance of high soil bulk density (compacted) samples was higher than for low density (non-compacted) soils due to changes in soil structure and porosity. Dry samples with high bulk density showed differences in the spectral intensity, but not in the absorption features. Wet samples in equal condition had statistically higher reflectance intensity than that of the low soil bulk density (non-compacted), and absorption differences at 1920 nm, which was due to the altered position of the water molecules. Soil line and spectral reflectance used together could detect soil bulk density variations for the clay soil. This technique could assist in the detection of high soil density in the laboratory by providing new soil information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions is an important tool for uses as diverse as assessment of the stress-related sensitivity of different plant cultivars and characterization of soil structure. Two of the most pervasive sources of stress are soil resistance to root penetration (SR) and matric potential (psi). However, the assessment of these sources of stress on physiological processes in different soils can be complicated by other sources of stress and by the strong relation between SR and psi in a soil. A multivariate boundary line approach was assessed as a means of reducing these cornplications. The effects of SR and psi stress conditions on plant responses were examined under growth chamber conditions. Maize plants (Zea mays L.) were grown in soils at different water contents and having different structures arising from variation in texture, organic carbon content and soil compaction. Measurements of carbon exchange (CE), leaf transpiration (ILT), plant transpiration (PT), leaf area (LA), leaf + shoot dry weight (LSDW), root total length (RTL), root surface area (RSA) and root dry weight (RDW) were determined after plants reached the 12-leaf stage. The LT, PT and LA were described as a function of SR and psi with a double S-shaped function using the multivariate boundary line approach. The CE and LSDW were described by the combination of an S-shaped function for SR and a linear function for psi. The root parameters were described by a single S-shaped function for SR. The sensitivity to SR and psi depended on the plant parameter. Values of PT, LA and LSDW were most sensitive to SR. Among those parameters exhibiting a significant response to psi, PT was most sensitive. The boundary line approach was found to be a useful tool to describe the functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the ionic speciation of reclaimed urban wastewater (RWW), and the impact of increasing RWW irrigation rates on soil properties and plant nutrition under field conditions. Most RWW elements (>66%) are readily available as NH(4)(+), Ca(2+), Mg(2+), K(+), SO(4)(2-), Cl(-), H(3)BO(3), Mn(2+) and Zn(2+), but in imbalanced proportion for plant nutrition. Lead, Cd, Cr and Al in RWW are mostly bounded with DOM or OH. Irrigation with RWW decreased soil acidity, which is beneficial to the acidic tropical soil. Although RWW irrigation builds exchangeable Na(+) up, the excessive Na(+) was leached out of the soil profile after a rainy summer season (>400 mm). Benefits of the disposal of RWW to the soil under tropical conditions were discussed, however, the over irrigation with RWW (>100% of crop evapotranspiration) led to a nutritional imbalance, accumulating S and leading to a plant deficiency of P and K. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is concern that the use of lower quality phosphate rock can result in elevated amounts of Fe-Al-P water-insoluble compounds in fertilizers and, consequently, low agronomic effectiveness. Therefore, studies were conducted to evaluate the effect of some of these compounds on plant growth. Four commercial superphosphates varying in chemical composition (two single and two triple superphosphates) were selected for the study. Fertilizer impurities were collected as water-insoluble residues by washing each P source with deionized water. A modal analysis, based primarily on elemental chemical analysis and x-ray diffractometry, was used to estimate the chemical composition of each P source. Water-soluble monocalcium phosphate (MCP) and the water-leached fertilizer residues were prepared to give a range of fertilizers in terms of water-soluble phosphorus (WSP) (0-100% of the available P as MCP). The water-leached fractions, MCP, and the mixtures of MCP with water-leached fractions were applied to supply 40 mg available P kg(1) to a thermic Rhodic Kanhapludult with pH values of 5.2 +/- 0.05 (unlimed) and 6.4 +/- 0.08 (limed). Wheat (Triticum aestivum L.) grown in a greenhouse for 101 d served as the test crop. The requirement for WSP was source and pH dependent. At a soil pH of 5.2, the fertilizers required 73 to 95% WSP to reach the maximum dry-matter yield, while they required 60 to 86% WSP at pH 6.4. To reach 90% of the maximum yield, all superphosphate fertilizers required <50% WSP. These results show that it is not always necessary to have high water solubility as required by legislation in many countries.