997 resultados para simulation gaming
Resumo:
Estimating rare events from zero-heavy data (data with many zero values) is a common challenge in fisheries science and ecology. For example, loggerhead sea turtles (Caretta caretta) and leatherback sea turtles (Dermochelys coriacea) account for less than 1% of total catch in the U.S. Atlantic pelagic longline fishery. Nevertheless, the Southeast Fisheries Science Center (SEFSC) of the National Marine Fisheries Service (NMFS) is charged with assessing the effect of this fishery on these federally protected species. Annual estimates of loggerhead and leatherback bycatch in a fishery can affect fishery management and species conservation decisions. However, current estimates have wide confidence intervals, and their accuracy is unknown. We evaluate 3 estimation methods, each at 2 spatiotemporal scales, in simulations of 5 spatial scenarios representing incidental capture of sea turtles by the U.S. Atlantic pelagic longline fishery. The delta-log normal method of estimating bycatch for calendar quarter and fishing area strata was the least biased estimation method in the spatial scenarios believed to be most realistic. This result supports the current estimation procedure used by the SEFSC.
Resumo:
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.
Resumo:
xlix, 121 p.
Resumo:
B:RUN is a low-level GIS software designed to help formulate options for the management of the coastal zone of Brunei Darussalam. This contribution presents the oil spill simulation module of B:RUN. This simple module, based largely on wind and sea surface current vector parameters, may be helpful in formulating relevant oil spill contingency plans. It can be easily adapted to other areas, as can the B:RUN software itself.
Resumo:
The article describes the key elements of a model simulating the dynamics of the anchoveta (Engraulis ringens) in the Peruvian upwelling system (4 degrees to 14 degrees South). This model, based on coupled differential equations, is parametrized mainly using empirical data and functional relationships presented in two volumes issued by ICLARM in 1987 and 1989, and may thus be viewed as test of the hypotheses presented therein. Results to date suggest that present knowledge of mechanisms controlling the anchoveta stock is essentially consistent, and sufficient to build a model reflecting essential features of the stock biomass and recruitment dynamics.