987 resultados para silicon oxide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized 'on', 'adjacent to' and 'away from' the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode. © 2010 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chemical looping process using the redox reactions of iron oxide has been used to produce separate streams of pure H2 and CO2 from a solid fuel. An iron oxide carrier prepared using a mechanical mixing technique and comprised of 100wt.% Fe2O3 was used. It was demonstrated that hydrogen can be produced from three representative coals - a Russian bituminous, a German lignite and a UK sub-bituminous coal. Depending on the fuel, pure H2 with [CO] ≲50vol.ppm can be obtained from the proposed process. The cyclic stability of the iron oxide carrier was not adversely affected by contaminants found in syngas which are gaseous above 273K. Stable quantities of H2 were produced over five cycles for all three coals investigated. Independent of the fuel, SO2 was not formed during the oxidation with steam, i.e. the produced H2 was not contaminated with SO2. Since oxidation with air removes contaminants and generates useful heat and pure N2 for purging, it should be included in the operating cycle. Overall, it was demonstrated that the proposed process may be an attractive approach to upgrade crude syngas produced by the gasification of low-rank coals to pure H2, representing a substantial increase in calorific value, whilst simultaneous capturing CO2, a greenhouse gas. © 2010 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the growth of ZnO nanostructures for photovoltaic applications will ensure greater device efficiency and parameter control. This paper reports on methods to engineer the morphology and tailor the nanostructure growth direction through the hydrothermal synthesis method. Effective control is achieved through the use of a sputtered zinc layer together with modifications of the growth solution. These nanostructures have been developed with a view to incorporation into excitonic solar cells, and methods to improve surface stability using a fully aqueous synthesis method will be discussed. © by Oldenbourg Wissenschaftsverlag, München.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details a bulk acoustic mode resonator fabricated in single-crystal silicon with a quality factor of 15 000 in air, and over a million below 10 mTorr at a resonant frequency of 2.18 MHz. The resonator is a square plate that is excited in the square-extensional mode and has been fabricated in a commercial foundry silicon-on-insulator (SOI) MEMS process through MEMSCAP. This paper also presents a simple method of extracting resonator parameters from raw measurements heavily buried in electrical feedthrough. Its accuracy has been demonstrated through a comparison between extracted motional resistance values measured at different voltage biases and those predicted from an analytical model. Finally, a method of substantially cancelling electrical feedthrough through system-level electronic implementation is also introduced. © 2008 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-crystal silicon resonant bulk acoustic mass sensor with a measured resolution of 125 pg cm2 is presented. The mass sensor comprises a micromachined silicon plate that is excited in the square-extensional bulk acoustic resonant mode at a frequency of 2.182 MHz, with a quality factor exceeding 106. The mass sensor has a measured mass to frequency shift sensitivity of 132 Hz cm2 μg. The resonator element is embedded in a feedback loop of an electronic amplifier to implement an oscillator with a short term frequency stability of better than 7 ppb at an operating pressure of 3.8 mTorr. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the design and electrical characterization of a micromechanical disk resonator fabricated in single crystal silicon using a foundry SOI micromachining process. The microresonator has been selectively excited in the radial extensional and the wine glass modes by reversing the polarity of the DC bias voltage applied on selected drive electrodes around the resonant structure. The quality factor of the resonator vibrating in the radial contour mode was 8000 at a resonant frequency of 6.34 MHz at pressure below 10 mTorr vacuum. The highest measured quality factor of the resonator in the wine glass resonant mode was 1.9 × 106 using a DC bias voltage of 20 V at about the same pressure in vacuum; the resonant frequency was 5.43 MHz and the lowest motional resistance measured was approximately 17 kΩ using a DC bias voltage of 60 V applied across 2.7 μm actuation gaps. This corresponds to a resonant frequency-quality factor (f-Q) product of 1.02 × 1013, among the highest reported for single crystal silicon microresonators, and on par with the best quartz crystal resonators. The quality factor for the wine glass mode in air was approximately 10,000. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract-This paper reports a single-crystal silicon mass sensor based on a square-plate resonant structure excited in the wine glass bulk acoustic mode at a resonant frequency of 2.065 MHz and an impressive quality factor of 4 million at 12 mtorr pressure. Mass loading on the resonator results in a linear downshift in the resonant frequency of this device, wherein the measured sensitivity is found to be 175 Hz cm2/μg. The silicon resonator is embedded in an oscillator feedback loop, which has a short-term frequency stability of 3 mHz (approximately 1.5 ppb) at an operating pressure of 3.2 mtorr, corresponding to an equivalent mass noise floor of 17 pg/cm2. Possible applications of this device include thin film monitoring and gas sensing, with the potential added benefits of scalability and integration with CMOS technology. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measure the effects of phonon confinement on the Raman spectra of silicon nanowires (SiNWs). We show how previous reports of phonon confinement in SiNWs and nanostructures are actually inconsistent with phonon confinement, but are due to the intense local heating caused by the laser power used for Raman measurements. This is peculiar to nanostructures, and would require orders of magnitude higher power in bulk Si. By varying the temperature, power and excitation energy, we identify the contributions of pure confinement, heating and carrier photo-excitation. After eliminating laser-related effects, the Raman spectra show confinement signatures typical of quantum wires. © 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measure the effects of phonon confinement on the Raman spectra of silicon nanowires. We show how previous spectra were inconsistent with phonon confinement, but were due to intense local heating caused by the laser. This is peculiar to nanostructures, and would require orders of magnitude more power in bulk Si. By working at very low laser powers, we identify the contribution of pure confinement typical of quantum wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is estimated that the adult human brain contains 100 billion neurons with 5-10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO(2) substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO(2) substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-equilibrium molecular dynamics (NEMD) simulations are performed to calculate thermal conductivity. The environment-dependent interatomic potential (EDIP) potential on crystal silicon is adopted as a model system. The issues are related to nonlinear response, local thermal equilibrium and statistical averaging. The simulation results by non-equilibrium molecular dynamics show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced at the nanometre scale. The effect of size on the thermal conductivity is also obtained by a theoretic analysis of the kinetic theory and formulas of the heat capacity. The analysis reveals that the contributions of phonon mean free path (MFP) and phonon number in a finite cell to thermal conductivity are very important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are simulated. Two partial edge dislocations are introduced into workpiece Si, it is found that the motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocations is far below the yield strength of Si. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anodic bonding with thin films of metal or alloy as an intermediate layer, finds increasing applications in micro/nanoelectromechanical systems. At the bonding temperature of 350 degrees C, voltage of 400 V, and 30 min duration, the anodic bonding is completed between Pyrex glass and crystalline silicon coated with an aluminum thin film with a thickness comprised between 50 and 230 nm. Sodium-depleted layers and dendritic nanostructures were observed in Pyrex 7740 glass adjacent to the bonding interface. The sodium depletion width does not increase remarkably with the thickness of aluminum film. The dendritic nanostructures result from aluminum diffusion into the Pyrex glass. This experimental research is expected to enhance the understanding of how the depletion layer and dendritic nanostructures affect the quality of anodic bonding. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro anchor is a kind of typical structures in micro/nano electromechanical systems (MEMS/NEMS), and it can be made by anodic bonding process, with thin films of metal or alloy as an intermediate layer. At the relative low temperature and voltage, specimens with actually sized micro anchor structures were anodically bonded using Pyrex 7740 glass and patterned crystalline silicon chips coated with aluminum thin film with a thickness comprised between 50 nm and 230 nm. To evaluate the bonding quality, tensile pulling tests have been finished with newly designed flexible fixtures for these specimens. The experimental results exhibit that the bonding tensile strength increases with the bonding temperature and voltage, but it decreases with the increase of the thickness of Al intermediate layer. This kind of thickness effect of the intermediate layer was not mentioned in the literature on anodic bonding. (C) 2008 Elsevier Ltd. All rights reserved.