989 resultados para set-points
Resumo:
Data for water vapor adsorption and evaporation are presented for a bare soil (sandy loam, clay content 15%) in a southern Spanish olive grove. Water losses and gains were measured using eight high-precision minilysimeters, placed around an olive tree, which had been irrigated until the soil reached field capacity (similar to 0.22 m(3) m(-3)). They were subsequently left to dry for 10 days. A pair of lysimeters was situated at each of the main points of the compass (N, E, S, W), at a distance of 1 m (the inner set of lysimeters; ILS) and 2 m (the outer set of lysimeters; OLS), respectively, from the tree trunk. Distinct periods of moisture loss (evaporation) and moisture gain (vapor adsorption) could be distinguished for each day. Vapor adsorption often started just after noon and generally lasted until the (early) evening. Values of up to 0.7 mm of adsorbed water per day were measured. Adsorption was generally largest for the OLS (up to 100% more on a daily basis), and increased during the dry down. This was mainly the result of lower OLS surface soil moisture contents (period-average absolute difference similar to 0.005 m(3) m(-3)), as illustrated using various analyses employing a set of micrometeorological equations describing the exchange of water vapor between bare soil and the atmosphere. These analyses also showed that the amount of water vapor adsorbed by soils is very sensitive to changes in atmospheric forcing and surface variables. The use of empirical equations to estimate vapor adsorption is therefore not recommended.
Resumo:
The systems used for the procurement of buildings are organizational systems. They involve people in a series of strategic decisions, and a pattern of roles, responsibilities and relationships that combine to form the organizational structure of the project. To ensure effectiveness of the building team, this organizational structure needs to be contingent upon the environment within which the construction project takes place. In addition, a changing environment means that the organizational structure within a project needs to be responsive, and dynamic. These needs are often not satisfied in the construction industry, due to the lack of analytical tools with which to analyse the environment and to design appropriate temporary organizations. This paper presents two techniques. First is the technique of "Environmental Complexity Analysis", which identifies the key variables in the environment of the construction project. These are classified as Financial, Legal, Technological, Aesthetic and Policy. It is proposed that their identification will set the parameters within which the project has to be managed. This provides a basis for the project managers to define the relevant set of decision points that will be required for the project. The Environmental Complexity Analysis also identifies the project's requirements for control systems concerning Budget, Contractual, Functional, Quality and Time control. The process of environmental scanning needs to be done at regular points during the procurement process to ensure that the organizational structure is adaptive to the changing environment. The second technique introduced is the technique of "3R analysis", being a graphical technique for describing and modelling Roles, Responsibilities and Relationships. A list of steps is introduced that explains the procedure recommended for setting up a flexible organizational structure that is responsive to the environment of the project. This is by contrast with the current trend towards predetermined procurement paths that may not always be in the best interests of the client.
Resumo:
The Greenland ice sheet will decline in volume in a warmer climate. If a sufficiently warm climate is maintained for a few thousand years, the ice sheet will be completely melted. This raises the question of whether the decline would be reversible: would the ice sheet regrow if the climate cooled down? To address this question, we conduct a number of experiments using a climate model and a high-resolution ice-sheet model. The experiments are initialised with ice sheet states obtained from various points during its decline as simulated in a high-CO2 scenario, and they are then forced with a climate simulated for pre-industrial greenhouse gas concentrations, to determine the possible trajectories of subsequent ice sheet evolution. These trajectories are not the reverse of the trajectory during decline. They converge on three different steady states. The original ice-sheet volume can be regained only if the volume has not fallen below a threshold of irreversibility, which lies between 80 and 90% of the original value. Depending on the degree of warming and the sensitivity of the climate and the ice-sheet, this point of no return could be reached within a few hundred years, sooner than CO2 and global climate could revert to a pre-industrial state, and in that case global sea level rise of at least 1.3 m would be irreversible. An even larger irreversible change to sea level rise of 5 m may occur if ice sheet volume drops below half of its current size. The set of steady states depends on the CO2 concentration. Since we expect the results to be quantitatively affected by resolution and other aspects of model formulation, we would encourage similar investigations with other models.
Resumo:
Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.
Resumo:
A set of filters based on the sequence of semiconductor edges is described which offers continuity of short-wave infrared blocking. The rejection throughout the stop region is greater than 103 for each filter and the transmission better than 70% through one octave with a square cutoff. The cutoff points are located at intervals of about two-thirds of an octave. Filters at 2.6 ,µm, 5.5 µm, and 12 µm which use a low-passing multilayer in combination with a semiconductor absorption edge are described in detail. The design of multilayers for optimum performance is discussed by analogy with the synthesis of electric circuit filters.
Resumo:
1. Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2. A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants’ overall reproductive success and long-term survival. Understanding the relationship between plant population size and⁄ or isolation and pollination limitation is of fundamental importance for plant conservation. 3. Weexamined flower visitation and seed set of 10 different plant species fromfive European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4. Wefound evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5. Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.
Resumo:
iLearn is a Web 2.0 tool developed in Blackboard to help students with Personal Development Planning (PDP). This paper describes a case study on how the innovative use of mobile digital technology in iLearn e-Portfolio for developing reflective portfolios for PDP benefits the students. The e-Portfolio tool benefits students as it enables them to create and share portfolios, record achievements and reflections that support future job applications and promotion. Students find it beneficial because they can make use of iLearn e-Portfolio to keep academic records and achievements, activities and interests, work experience, reflective practice, employer information and some other useful resources, and also to tailor their CV and covering letters including evidence to support their CV, transferable skills and selling points. Useful information for preparing for an interview, reflecting after an event and any thoughts and evaluation can be kept in iLearn e-Portfolio. Keeping assessment and feedback records in iLearn e-Portfolio enables students to know their progress, to identify any gaps they need to fill to develop their study practices and areas for development. The key points from the feedback on the assignments and assessments are beneficial for future improvement. The reflections on the assignments and how students make use of the advice are particularly useful to improve their overall performance. In terms of pedagogical benefits, the “Individual Learner Profile” records and reviews evidence in verbal communication, basic and higher academic skills, time management, numeracy skill and IT skills, students become increasingly aware of their own strengths and any weaker areas that may require development. The e-Portfolio also provides opportunity for students to reflect on the experience and skills they have gained whilst participating in activities outside their studies. As the iLearn e-Portfolio is a reflective practice tool, it is consistent with the principle of Schon's reflective practitioner to reframe problems and to explore the consequences of actions. From the students’ feedback, for those who engage regularly in iLearn, they are better able to set agendas for their Personal Tutorial meetings and provide their Personal Tutor with a unique record of their achievements, skills and attributes which help them writing effective references for them. They make the most of their student experience in general. They also enhance their transferable skills and employability overall. The iLearn e-Portfolio prepares for the workplace and life beyond University including continuing professional development. Students are aware of their transferable skills, evidence of the skills and skill level, including award or accreditation, and their personal reflection on their transferable skills. It is beneficial for students to be aware of their transferable skills, to produce evidence of the skills and skills level such as award and accreditation, and to record their personal reflection on their transferable skills. Finally, the innovative use of mobile digital technology in iLearn e-Portfolio for developing reflective portfolios for PDP will improve their employability.
Resumo:
This paper deals with second-generation, one-and-a-half generation and ‘‘prolonged sojourner” Trinidadian transnational migrants, who have decided to ‘return’ to the birthplace of their parents. Based on 40 in-depth interviews, the paper considers both the positive and critical things that these youthful transnational migrants report about returning to, and living in, this multi-ethnic plural society and the salience of racial and colour-class stratification as part of their return migration experiences. Our qualitative analysis is based on the narratives provided by these youthful returnees, as relayed ‘‘in their own words”, presenting critical reflections on racism, racial identities and experiences as transnational Trinidadians. It is clear that it is contexts such as contemporary working environments, family and community that act as the reference points for the adaptation ‘‘back home” of this strongly middle-class cohort. We accordingly encounter a diverse, sometimes contesting set of racial issues that emerge as salient concerns for these returnees. The consensus is that matters racial remain as formidable legacies in the hierarchical stratification of Trinidadian society for a sizeable number. Many of our respondents reported the positive aspects of racial affirmation on return. But for another sub-set, the fact that multi-ethnic and multi-cultural mixing are proudly embraced in Trinidad meant that it was felt that return experiences were not overly hindered, or blighted by obstacles of race and colour-class. For these returnees, Trinidad and Tobago is seen as representing a 21st century ‘‘Melting Pot”. But for others the continued existence of racial divisions within society – between ethnic groups and among those of different skin shades – was lamented. In the views of these respondents, too much racial power is still ascribed to ‘near-whiteness’. But for the most part, the returnees felt that where race played a part in their new lives, this generally served to advantage them. However, although the situation in Trinidad appears to have been moderated by assumptions that it remains a racial ‘Melting Pot’, the analysis strongly suggests that the colour-class system of stratification is still playing an essential role, along with racial stereotyping in society at large.
Resumo:
Improvements in the resolution of satellite imagery have enabled extraction of water surface elevations at the margins of the flood. Comparison between modelled and observed water surface elevations provides a new means for calibrating and validating flood inundation models, however the uncertainty in this observed data has yet to be addressed. Here a flood inundation model is calibrated using a probabilistic treatment of the observed data. A LiDAR guided snake algorithm is used to determine an outline of a flood event in 2006 on the River Dee, North Wales, UK, using a 12.5m ERS-1 image. Points at approximately 100m intervals along this outline are selected, and the water surface elevation recorded as the LiDAR DEM elevation at each point. With a planar water surface from the gauged upstream to downstream water elevations as an approximation, the water surface elevations at points along this flooded extent are compared to their ‘expected’ value. The pattern of errors between the two show a roughly normal distribution, however when plotted against coordinates there is obvious spatial autocorrelation. The source of this spatial dependency is investigated by comparing errors to the slope gradient and aspect of the LiDAR DEM. A LISFLOOD-FP model of the flood event is set-up to investigate the effect of observed data uncertainty on the calibration of flood inundation models. Multiple simulations are run using different combinations of friction parameters, from which the optimum parameter set will be selected. For each simulation a T-test is used to quantify the fit between modelled and observed water surface elevations. The points chosen for use in this T-test are selected based on their error. The criteria for selection enables evaluation of the sensitivity of the choice of optimum parameter set to uncertainty in the observed data. This work explores the observed data in detail and highlights possible causes of error. The identification of significant error (RMSE = 0.8m) between approximate expected and actual observed elevations from the remotely sensed data emphasises the limitations of using this data in a deterministic manner within the calibration process. These limitations are addressed by developing a new probabilistic approach to using the observed data.
Resumo:
Satellite observed data for flood events have been used to calibrate and validate flood inundation models, providing valuable information on the spatial extent of the flood. Improvements in the resolution of this satellite imagery have enabled indirect remote sensing of water levels by using an underlying LiDAR DEM to extract the water surface elevation at the flood margin. Further to comparison of the spatial extent, this now allows for direct comparison between modelled and observed water surface elevations. Using a 12.5m ERS-1 image of a flood event in 2006 on the River Dee, North Wales, UK, both of these data types are extracted and each assessed for their value in the calibration of flood inundation models. A LiDAR guided snake algorithm is used to extract an outline of the flood from the satellite image. From the extracted outline a binary grid of wet / dry cells is created at the same resolution as the model, using this the spatial extent of the modelled and observed flood can be compared using a measure of fit between the two binary patterns of flooding. Water heights are extracted using points at intervals of approximately 100m along the extracted outline, and the students T-test is used to compare modelled and observed water surface elevations. A LISFLOOD-FP model of the catchment is set up using LiDAR topographic data resampled to the 12.5m resolution of the satellite image, and calibration of the friction parameter in the model is undertaken using each of the two approaches. Comparison between the two approaches highlights the sensitivity of the spatial measure of fit to uncertainty in the observed data and the potential drawbacks of using the spatial extent when parts of the flood are contained by the topography.
Resumo:
iLearn is a quasi-Web 2.0 tool developed in Blackboard to help users with Personal Development Planning (PDP). This paper describes a case study on how the innovative use of mobile digital technology in iLearn e-Portfolio for developing reflective portfolios for PDP benefits the users, who are training to be professionals in construction management and surveying, The e-Portfolio tool benefits users as it enables them to create and share portfolios, record achievements and reflections that support future job applications and promotion. Users find it beneficial because they can make use of iLearn e-Portfolio to keep academic records and achievements, activities and interests, work experience, reflective practice, employer information and some other useful resources, and also to tailor their CV and covering letters including evidence to support their CV, transferable skills and selling points. Useful information for preparing for an interview, reflecting after an event and any thoughts and evaluation can be kept in iLearn e-Portfolio. Keeping assessment and feedback records in iLearn e-Portfolio enables learners to know their progress, to identify any gaps they need to fill to develop their study practices and areas for development. The key points from the feedback on the assignments and assessments are beneficial for future improvement. The reflections on the tasks and how they make use of the advice are particularly useful to improve their overall performance. In terms of pedagogical benefits, the “Individual Learner Profile” records and reviews evidence in verbal communication, basic and higher academic skills, time management, numeracy skill and IT skills, learners become increasingly aware of their own strengths and any weaker areas that may require development. The e-Portfolio also provides opportunity for them to reflect on the experience and skills they have gained whilst participating in activities outside their studies. As the iLearn e-Portfolio is a reflective practice tool, it is consistent with the principle of Schon's reflective practitioner to reframe problems and to explore the consequences of actions. From the users’ feedback, for those who engage regularly in iLearn, they are better able to set agendas for their supervision meetings and provide their supervisor with a unique record of their achievements, skills and attributes which help them writing effective references for them. They make the most of their learning experience in general. They also enhance their transferable skills and employability overall. The iLearn e-Portfolio prepares them for the workplace including continuing professional development. Users are aware of their transferable skills, evidence of the skills and skill level, including award or accreditation, and their personal reflection on their transferable skills. It is beneficial for them to be aware of their transferable skills, to produce evidence of the skills and skills level such as award and accreditation, and to record their personal reflection on their transferable skills. Finally, the innovative use of mobile digital technology in iLearn e-Portfolio for developing reflective portfolios for PDP will improve their employability.
Resumo:
The perturbed Hartree–Fock theory developed in the preceding paper is applied to LiH, BH, and HF, using limited basis‐set SCF–MO wavefunctions derived by previous workers. The calculated values for the force constant ke and the dipole‐moment derivative μ(1) are (experimental values in parentheses): LiH, ke = 1.618(1.026)mdyn/Å,μ(1) = −18.77(−2.0±0.3)D/ÅBH,ke = 5.199(3.032)mdyn/Å,μ(1) = −1.03(−)D/Å;HF,ke = 12.90(9.651)mdyn/Å,μ(1) = −2.15(+1.50)D/Å. The values of the force on the proton were calculated exactly and according to the Hellmann–Feynman theorem in each case, and the discrepancies show that none of the wavefunctions used are close to the Hartree–Fock limit, so that the large errors in ke and μ(1) are not surprising. However no difficulties arose in the perturbed Hartree–Fock calculation, so that the application of the theory to more accurate wavefunctions appears quite feasible.