989 resultados para segmentazione immagini mediche algoritmo Canny algoritmo watershed edge detection
Resumo:
Manteno Lake is located 8 miles northwest of Earling, IA in Shelby County. The lake has been impaired with an overload of silt and nutrients. In October of 2007, land directly north of the lake will be coming out of CRP and back into agricultural production. The Shelby Soil and Water Conservation District, Shelby County Board of Supervisors and Shelby County Conservation Board feel strongly that treatment of this area is necessary prior to the CRP contract expiring. The placement and construction of three structures will reduce the amount of silt and nutrients affecting Manteno Lake. This project calls for the construction of three structures on crucial tributaries to the lake.
Resumo:
With WIRB funding the Fox River Ecosystem Development board will continue to install prioritized practices identified by assessments within the impaired segment of Fox River. The FRED board is also asking to continue funding for a new 5 year position for assessment, planning and technical assistance. With new assessments and water quality monitoring already being done on the impaired segment of the Fox River a lot of valuable information is at hand. Ecosystem Development board is requesting funding from WIRB to install grade stabilization structures, water sediment basins, and terraces to reduce sediment delivery to Fox River. The FRED board in both Iowa and Missouri are committed not only to seek funding to continue water quality efforts for more practices but also to enhance and protect existing practices and investments that protect our water quality and economic viability in both states. We are off to a good start and want to continue our progress on the Fox River.
Resumo:
The City of Marquette lies in the 65,000 acre Mississippi River watershed, and is surrounded by steep bluffs. Though scenic, controlling water runoff during storm events presents significant challenges. Flash-flooding from the local watershed has plagued the city for decades. The people of Marquette have committed to preserve the water quality of key natural resources in the area including the Bloody Run Creek and associated wetlands by undertaking projects to control the spread of debris and sediment caused by excess runoff during area storm events. Following a July 2007 storm (over 8” of rain in 24 hours) which caused unprecedented flood damage, the City retained an engineering firm to study the area and provide recommendations to eliminate or greatly reduce uncontrolled runoff into the Bloody Run Creek wetland, infrastructure damage and personal property loss. Marquette has received Iowa Great Places designation, and has demonstrated its commitment to wetland preservation with the construction of Phase I of this water quality project. The Bench Area Storm Water Management Plan prepared by the City in 2008 made a number of recommendations to mitigate flash flooding by improving storm water conveyance paths, detention, and infrastructure within the Bench area. Due to steep slopes and rocky geography, infiltration based systems, though desirable, would not be an option over surface based systems. Runoff from the 240 acre watershed comes primarily from large, steep drainage areas to the south and west, flowing to the Bench area down three hillside routes; designated as South East, South Central and South West. Completion of Phase I, which included an increased storage capacity of the upper pond, addressed the South East and South Central areas. The increased upper pond capacity will now allow Phase II to proceed. Phase II will address runoff from the South West drainage area; which engineers have estimated to produce as much water volume as the South Central and South East areas combined. Total costs for Phase I are $1.45 million, of which Marquette has invested $775,000, and IJOBS funding contributed $677,000. Phase II costs are estimated at $617,000. WIRB funding support of $200,000 would expedite project completion, lessen the long term debt impact to the community and aid in the preservation of the Bloody Run Creek and adjoining wetlands more quickly than Marquette could accomplish on its own.
Resumo:
The Headwaters North Fork Maquoketa River Project encompasses the Hewitt Creek, Bear Creek, and the Coffee Creek-North Fork Maquoketa subwatersheds. These three.sub-watersheds have intensive livestock agriculture production with manures applied generously on the landscape. Approximately 85% of the watershed area is cropland. Although livestock operations are not permitted to discharge waste directly into surface waters, the mishandling and over-application of animal waste and fertilizer have impacted water quality. Each of the subwatersheds has a strong locally led effort, concentrating significant efforts on monitoring, education, and conservation practice adoption. The original MRBI application was accepted by USDA with funding being extended to producers through FY14. A large component of this effort was the IJOBS funds awarded by IDALS to support the Project Coordinator for the first two years of this project. As previous funding for the support of the Project Coordinator has been exhausted, the local partners identified WIRB as a potential replacement funding source. The goal of the existing MRBI effort, in being consistent with this WIRB application, will help landowners and operators in the three selected watersheds voluntarily implement conservation systems that reduce nutrient loss; protect, restore, and enhance wetlands; maintain agricultural productivity; improve wildlife habitat; and achieve other objectives, such as flood reduction.
Resumo:
Clear Lake, Iowa's third largest natural lake, is a premier natural resource and popular recreational destination in north central Iowa. Despite the lake's already strong recreational use, water quality concerns have not allowed the lake to reach its full potential. Clear Lake is listed on Iowa's Draft 2010 303(d) Impaired Waters List for algae, bacteria, and turbidity. Many restoration practices have been implemented to treat the algae and turbidity impairment, but few practices have been installed to treat bacteria. Reducing beach bacteria levels is a priority of the lake restoration partners. Federal, State, and local partners have invested more than $20 million in lake and watershed restoration efforts to improve water clarity and quality. These partners have a strong desire to ensure high bacteria levels at public swim beaches do not undermine the other water quality improvements. Recent bacteria source tracking completed by the State Hygienic Laboratory indicates that Canada Geese are a major contributor of bacteria loading to the Clear Lake swim beaches. Other potential sources include unpermitted septic systems in the watershed. The grant request proposes to reduce bacteria levels at Clear Lake's three public swim beaches by utilizing beach cleaner machines to remove goose waste, installing goose deterrents at the swim beaches, and continuing a septic system update grant program. These practices began to be implemented in 2011 and recent bacteria samples in 2012 are showing they can be effective if the effort is continued.
Resumo:
A targeted approach is being used in the Iowa Great Lakes Watershed with a keystone project featured within this project application in the heavily urbanized Center Lake Watershed. As identified in the Iowa Great Lakes Watershed Management Plan, urban runoff is the only remaining watershed concern in the Center Lake Watershed as the map in the attachments clearly shows. Fully one third of the watershed concerns of Center Lake will be treated through the installation of 7 keystone urban practices and will remove 63 pounds of phosphorous from entering the lake annually. Due to the interconnectedness of the Iowa Great Lakes (IGL), the watershed has been broken down into sub units called Resource Management Areas (RMA's) for priority practice implementation. This project will mesh with the existing Iowa Great Lakes Watershed Management Plan by reducing pollutant loads from the highest priority RMA's which are resulting in impaired water bodies. The majority of the funding needed for the specific practices specified in this proposal has already been secured through the Iowa DNR Section 319 and Lake Restoration Programs, The Water Quality Commission and the City of Spirit Lake. This funding request will simply bring the overall cost of these keystone practices into the range of affordability for the committed funders and the City of Spirit Lake
Resumo:
Twelve Mile Creek Lake is a 660 acre, Significant Publicly Owned Lake with a watershed of 14,820 acres for a ratio of 21:3. The watershed is predominately privately owned agricultural land that originates in Adair County and drains into the lake which serves as the primary source water for the City of Creston, Union County and the seven counties served by the Southern Iowa Rural Water Association. In recent years, frequent algae blooms and recurrent spikes in suspended solid concentrations have been inflating water treatment expenses for the Creston Municipal Utilities (CMU). Declining trends in water quality spurred CMU to enlist the Union Soil and Water Conservation District (SWCD) to assist in evaluating watershed conditions for potential upland improvements. Significant gully erosion issues that had been previously underestimated were discovered during this watershed assessment process. Newly acquired LiDAR elevation data readily revealed this concern which was previously obscured from view by the dense tree canopy. A Watershed Development and Planning Assistance Grant Application was approved and funded by the Iowa Department of Ag and Land Stewardship- Division of Soil Conservation. Throughout the planning process, project partners innovatively evaluated and prioritized a number of resource concerns throughout the watershed. The implementation plan presented will thwart these threats which left unaided will continue to diminish the overall health of the system, reduce the appeal of the lake to recreational users, and contribute to higher water treatment costs.
Resumo:
Little Bear Creek is a 21.79 mile Class A1 and B (WW2) warm water stream that encompasses approximately 29,202 acres in northern Poweshiek County. The lower 8.4 mile segment is listed as biologically impaired on both the IDNR 2008 303(d) list and 2010 303(d) draft list. A RASCAL assessment and landowner survey was completed through a development grant in 2011, and these assessments indicate that erosion and sediment delivery from cropland, lack of adequate buffers along the stream channel, and streambank conditions contribute significant sediment delivery to the stream, likely resulting in the impairment. An estimated 36,544 tons of sediment are delivered to the stream annually. A total of 11,075 acres (38%) of the watershed are high priority areas or land with sediment delivery rates greater than one. Our goal over 15 years is to install Best Management Practices (BMPs) and increase public education in order to reduce sediment and phosphorus delivery by 25% and decrease priority areas by 15%. More specific objectives for this WIRB project are to 1) Reduce annual sediment delivery by roughly 16.3% or 1,058 tons and associated phosphorus delivery by 1,375 pounds and 2) Develop an information and education program aimed at producers and residents within the headwaters of Grant and Chester townships, which account for 18% of the watershed's priority areas. The SWCD proposes to utilize 50% EQIP funds and 25% WIRB funds toward rural BMPs, and 75% WIRB funds toward urban BMPs received through this application.
Resumo:
O objetivo deste trabalho foi avaliar a eficiência da aplicação do modelo SEBAL em estimar os fluxos de energia em superfície e a evapotranspiração diária, numa extensa área de cultivo de arroz irrigado, no município de Paraíso do Sul, RS, tendo como parâmetros dados do sensor ASTER. As variáveis estudadas constituem importantes parâmetros do tempo e do clima em estudos agrometeorológicos e de racionalização no uso da água. As metodologias convencionais de estimativa desses parâmetros são pontuais e geralmente apresentam incertezas, que aumentam quando o interesse é o comportamento espacial desses parâmetros. Aplicou-se o algoritmo "Surface Energy Balance Algorithm for Land" (SEBAL), em uma imagem do sensor "Advanced Spaceborne Thermal Emission and Reflection Radiometer" (ASTER). As estimativas obtidas foram comparadas com medições em campo, realizadas por uma estação micrometeorológica localizada no interior da área de estudo. As estimativas mais precisas foram as de fluxo de calor sensível e de evapotranspiração diária, e a estimativa que apresentou maior erro foi a do fluxo de calor no solo. A metodologia empregada foi capaz de reproduzir os fluxos de energia em superfície de maneira satisfatória para estudos agrometeorológicos e de rendimento de culturas.
Resumo:
O objetivo deste trabalho foi avaliar variáveis discriminantes no mapeamento digital de solos com uso de redes neurais artificiais. Os atributos topográficos elevação, declividade, aspecto, plano de curvatura e índice topográfico, derivados de um modelo digital de elevação, e os índices de minerais de argila, óxido de ferro e vegetação por diferença normalizada, derivados de uma imagem do Landsat7, foram combinados e avaliados quanto à capacidade de discriminação dos solos de uma área no noroeste do Estado do Rio de Janeiro. Foram utilizados o simulador de redes neurais Java e o algoritmo de aprendizado "backpropagation". Os mapas gerados por cada um dos seis conjuntos de variáveis testados foram comparados com pontos de referência, para a determinação da exatidão das classificações. Esta comparação mostrou que o mapa produzido com a utilização de todas as variáveis obteve um desempenho superior (73,81% de concordância) ao de mapas produzidos pelos demais conjuntos de variáveis. Possíveis fontes de erro na utilização dessa abordagem estão relacionadas, principalmente, à grande heterogeneidade litológica da área, que dificultou o estabelecimento de um modelo de correlação ambiental mais realista. A abordagem utilizada pode contribuir para tornar o levantamento de solos no Brasil mais rápido e menos subjetivo.
Resumo:
The Watershed Improvement Fund and the Iowa Watershed Improvement Review Board (WIRB) were created in 2005. This statute is now codified in Iowa Code Chapter 466A. The fifteen-member Board conducted seven meetings throughout the year in-person or via teleconference. Meetings were held January 23, February 27, April 17, June 18, July 24, September 25 and December 17. Attachment 1 lists the board members and their organization affiliation. The Board completed one Request For Applications (RFA) for the Watershed Improvement Fund. The RFA was announced November 6, 2014 and closed December 29, 2014. December 29, 2014 Closing Date Request For Applications: The Board received 16 applications in response to this RFA. These applications requested $2.8 million in Watershed Improvement Funds and leveraged an additional $9.1 million for a total of $11.9 million of watershed project activity proposed. After reviewing and ranking the applications individually from this RFA, the Board met and selected eight applications for funding. The eight applications were approved for $1,249,861 of Watershed Improvement Funds. Data on the eight selected projects in this RFA include the following: • These projects included portions of 12 counties. • The $1.2 million requested of Watershed Improvement Funds leveraged an additional $4.2 million for a total of $5.4 million in watershed improvements. • Approved projects ranged in funding from $41,980 to $250,000. Attachment 2 lists the approved projects’ name, applicant name, project length, county or counties where located, and funding amount for the RFA. Attachment 3 is a map showing the status of all projects funded since inception of the program. At the end of 2015 there are 111 completed projects and 39 active projects. In cooperation with the Treasurer of State, the WIRB submitted the 2015 year-end report for the Rebuild Iowa Infrastructure Fund to the Legislative Services Agency and the Department of Management. Attachment 4 contains the 2015 annual progress reports submitted from active projects or projects finished in 2015.
Resumo:
This is the annual appropriations report submitted on behalf of the Watershed Improvement Review Board (WIRB).
Resumo:
2013 yea end summary for the Watershed Improvement Fund.
Resumo:
The Watershed Planning Advisory Council (WPAC) was established by the Iowa Legislature (see Appendix A: Iowa Code 466B.31) to assemble a diverse group of stakeholders to make recommendations to state and federal agencies to protect water resources in Iowa. In 2015, WPAC prioritized the seven areas for recommendations outlined in 466B.31, and small work groups drafted recommendations for approval by the full membership.
Resumo:
Waterloo Creek Watershed is a 30,610 acre area that straddles the Iowa and Minnesota border. The lower 43% of the watershed is in Iowa. Bee and Duck Creeks in Minnesota flow into Waterloo Creek in Iowa. Designated as a primary contact recreational stream as well as a high-quality, cold water stream in Iowa, Waterloo Creek is a popular destination for anglers and other nature enthusiasts. The stream was on the Iowa DNR’s “Impaired Waters List” in 2008 and 2010 for Escherichia coli (E. coli) bacteria. Samples collected in 2010 and 2011 showed higher levels of E. coli. at sites with cattle in close proximity to the stream and were generally greater after high rainfall events. Other factors affecting water quality are high turbidity levels and frequent flooding. There is a deficiency in upland land treatment and an abundance of conventional tillage which increases the amount of erosion and potential for surface runoff to carry sediment to the stream. A comprehensive watershed assessment and management plan have been completed for the watershed which identify the causes of and solutions to water quality impairments. The goals of this project are to 1) develop a formal working relationship between technical staff in Iowa and Minnesota, 2) identify specific locations for Best Management Practice (BMP) implementation, 3) reduce sediment loading to Waterloo Creek to improve aquatic habitat and decrease bacteria delivery, and 4) reduce flooding potential in the watershed. The following BMPs will be implemented to reach these goals: terraces, grade stabilization structures, pasture management, stream buffers, stream bank stabilization, and agricultural waste structures.