989 resultados para scanner
Resumo:
For the past 10 years, medical imaging techniques have been increasingly applied to forensic investigations. To obtain histological and toxicological information, tissue and liquid samples are required. In this article, we describe the development of a low-cost, secure, and reliable approach for a telematic add-on for remotely planning biopsies on the Virtobot robotic system. Data sets are encrypted and submitted over the Internet. A plugin for the OsiriX medical image viewer allows for remote planning of needle trajectories that are used for needle placement. The application of teleradiological methods to image-guided biopsy in the forensic setting has the potential to reduce costs and, in conjunction with a mobile computer tomographic scanner, allows for tissue sampling in a mass casualty situation involving nuclear, biological, or chemical agents, in a manner that minimizes the risk to involved staff.
Resumo:
OBJECTIVE: In this review, we attempt to address many of the issues that are related to ensuring patient benefit in body CT, balancing the use of ionizing radiation and iodinated contrast media. We attempt to not only summarize the literature but also make recommendations relevant to CT protocols, including the technical parameters of both the scanner and the associated contrast media. CONCLUSION: Although CT is a powerful tool that has transformed the practice of medicine, the benefits are accompanied by important risks. Radiologists must understand these risks and the strategies available to minimize them as well as the risks associated with contrast medium delivery in abdominal CT.
Resumo:
Early detection is a major goal in the management of malignant melanoma. Besides clinical assessment many noninvasive technologies such as dermoscopy, digital dermoscopy and in vivo laser scanner microscopy are used as additional methods. Herein we tested a system to assess lesional perfusion as a tool for early melanoma detection.
Resumo:
Magnetic resonance spectroscopy enables insight into the chemical composition of spinal cord tissue. However, spinal cord magnetic resonance spectroscopy has rarely been applied in clinical work due to technical challenges, including strong susceptibility changes in the region and the small cord diameter, which distort the lineshape and limit the attainable signal to noise ratio. Hence, extensive signal averaging is required, which increases the likelihood of static magnetic field changes caused by subject motion (respiration, swallowing), cord motion, and scanner-induced frequency drift. To avoid incoherent signal averaging, it would be ideal to perform frequency alignment of individual free induction decays before averaging. Unfortunately, this is not possible due to the low signal to noise ratio of the metabolite peaks. In this article, frequency alignment of individual free induction decays is demonstrated to improve spectral quality by using the high signal to noise ratio water peak from non-water-suppressed proton magnetic resonance spectroscopy via the metabolite cycling technique. Electrocardiography (ECG)-triggered point resolved spectroscopy (PRESS) localization was used for data acquisition with metabolite cycling or water suppression for comparison. A significant improvement in the signal to noise ratio and decrease of the Cramér Rao lower bounds of all metabolites is attained by using metabolite cycling together with frequency alignment, as compared to water-suppressed spectra, in 13 healthy volunteers.
Enamel loss and adhesive remnants following bracket removal and various clean-up procedures in vitro
Resumo:
This study evaluated the enamel loss and composite remnants after debonding and clean-up. The tested null hypothesis is that there are no differences between different polishing systems regarding removing composite remnants without damaging the tooth surface. Brackets were bonded to 75 extracted human molars and removed after a storage period of 100 hours. The adhesive remnant index (ARI) was evaluated. The clean-up was carried out with five different procedures: 1. carbide bur; 2. carbide bur and Brownie and Greenie silicone polishers; 3. carbide bur and Astropol polishers; 4. carbide bur and Renew polishers; and 5. carbide bur, Brownie, Greenie and PoGo polishers. Silicone impressions were made at baseline (T0) and after debonding (T1) and polishing (T2) to produce plaster replicas. The replicas were analysed with a three-dimensional laser scanner and measured with analytical software. Statistical analysis was performed with the Kruskal-Wallis test and pairwise Wilcoxon tests with Bonferroni-Holm adjustment (α = 0.05). Enamel breakouts after debonding were detectable in 27 per cent of all cases, with a mean volume loss of 0.02 mm(3) (±0.03 mm(3)) and depth of 44.9 μm (±48.3 μm). The overall ARI scores was 3 with a few scores of 1 and 2. The composite remnants after debonding had a mean volume of 2.48 mm(3) (±0.92 mm(3)). Mean volume loss due to polishing was 0.05 mm(3) (±0.26 mm(3)) and the composite remnants had a mean volume of 0.22 mm(3) (±0.32 mm(3)). There were no statistically significant differences in volumetric changes after polishing (P = 0.054) between the different clean-up methods. However, sufficient clean-up without enamel loss was difficult to achieve.
Resumo:
Background The purpose of the present study was to investigate the radial distribution patterns of cartilage degeneration in dysplastic hips at different stages of secondary osteoarthritis (OA) by using radial delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), and to assess whether pre-contrast measurements are necessary. Methods Thirty-five hips in 21 subjects (mean age ± SD, 27.6 ± 10.8 years) with acetabular dysplasia (lateral CE angle < 25°) were studied. Severity of OA was assessed on radiographs using Tönnis grading. Pre- (T1pre) and post-contrast T1 (T1Gd) values were measured at 7 sub-regions on radial reformatted slices acquired from a 3-dimensional (3D) T1 mapping sequence using a 1.5 T MR scanner. Values of radial T1pre, T1Gd and ΔR1 (1/T1Gd - 1/T1pre) of subgroups with different severity of OA were compared to those of the subgroup without OA using nonparametric tests, and bivariate linear Pearson correlations between radial T1Gd and ΔR1 were analyzed for each subgroup. Results Compared to the subgroup without OA, the subgroup with mild OA was observed with a significant decrease in T1Gd in the anterosuperior to superior sub-regions (mean, 476 ~ 507 ms, p = 0.026 ~ 0.042) and a significant increase in ΔR1 in the anterosuperior to superoposterior and posterior sub-regions (mean, 0.93 ~ 1.37 s-1, p = 0.012 ~ 0.042). The subgroup with moderate to severe OA was observed with a significant overall decrease in T1Gd (mean, 404 ~ 452 ms, p = 0.001 ~ 0.020) and an increase in ΔR1 (mean, 1.17 ~1.69 s-1, p = 0.001 ~ 0.020). High correlations were observed between radial T1Gd and ΔR1 for all subgroups (r = −0.869 ~ −0.944, p < 0.001). Conclusions Radial dGEMRIC without pre-contrast measurements is useful for evaluating different patterns of cartilage degeneration in the entire hip joint of patients with hip dysplasia, particularly for those in early stages of secondary OA.
Resumo:
The three-dimensional documentation of footwear and tyre impressions in snow offers an opportunity to capture additional fine detail for the identification as present photographs. For this approach, up to now, different casting methods have been used. Casting of footwear impressions in snow has always been a difficult assignment. This work demonstrates that for the three-dimensional documentation of impressions in snow the non-destructive method of 3D optical surface scanning is suitable. The new method delivers more detailed results of higher accuracy than the conventional casting techniques. The results of this easy to use and mobile 3D optical surface scanner were very satisfactory in different meteorological and snow conditions. The method is also suitable for impressions in soil, sand or other materials. In addition to the side by side comparison, the automatic comparison of the 3D models and the computation of deviations and accuracy of the data simplify the examination and delivers objective and secure results. The results can be visualized efficiently. Data exchange between investigating authorities at a national or an international level can be achieved easily with electronic data carriers.
Resumo:
Auditory neuroscience has not tapped fMRI's full potential because of acoustic scanner noise emitted by the gradient switches of conventional echoplanar fMRI sequences. The scanner noise is pulsed, and auditory cortex is particularly sensitive to pulsed sounds. Current fMRI approaches to avoid stimulus-noise interactions are temporally inefficient. Since the sustained BOLD response to pulsed sounds decreases with repetition rate and becomes minimal with unpulsed sounds, we developed an fMRI sequence emitting continuous rather than pulsed gradient sound by implementing a novel quasi-continuous gradient switch pattern. Compared to conventional fMRI, continuous-sound fMRI reduced auditory cortex BOLD baseline and increased BOLD amplitude with graded sound stimuli, short sound events, and sounds as complex as orchestra music with preserved temporal resolution. Response in subcortical auditory nuclei was enhanced, but not the response to light in visual cortex. Finally, tonotopic mapping using continuous-sound fMRI demonstrates that enhanced functional signal-to-noise in BOLD response translates into improved spatial separability of specific sound representations.
Resumo:
Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.
Resumo:
STUDY DESIGN: The structural integrity of the nucleus pulposus (NP) of intervertebral discs was targeted by enzyme-specific degradations to correlate their effects to the magnetic resonance (MR) signal. OBJECTIVE: To develop quantitative MR imaging as an accurate and noninvasive diagnostic tool to better understand and treat disc degeneration. SUMMARY OF BACKGROUND DATA: Quantitative MR analysis has been previously shown to reflect not only the disc matrix composition, but also the structural integrity of the disc matrix. Further work is required to identify the contribution of the structural integrity versus the matrix composition to the MR signal. METHODS: The bovine coccygeal NPs were injected with either enzyme or buffer, incubated at 37 degrees C as static, unloaded and closed 3-disc segments, and analyzed by a 1.5-Tesla MR scanner to measure MR parameters. RESULTS: Collagenase degradation of the NP significantly decreased the relaxation times, slightly decreased the magnetization transfer ratio, and slightly increased the apparent diffusion coefficient. Targeting the proteoglycan and/or hyaluronan integrity by trypsin and hyaluronidase did not significantly affect the MR parameters, except for an increase in the apparent diffusion coefficient of the disc after trypsin treatment. CONCLUSIONS: Our results demonstrate that changes in the structural integrity of matrix proteins can be assessed by quantitative MR.
Resumo:
PURPOSE: To determine sensitivity, specificity and inter-observer variability of different whole-body MRI (WB-MRI) sequences in patients with multiple myeloma (MM). METHODS AND MATERIALS: WB-MRI using a 1.5T MRI scanner was performed in 23 consecutive patients (13 males, 10 females; mean age 63+/-12 years) with histologically proven MM. All patients were clinically classified according to infiltration (low-grade, n=7; intermediate-grade, n=7; high-grade, n=9) and to the staging system of Durie and Salmon PLUS (stage I, n=12; stage II, n=4; stage III, n=7). The control group consisted of 36 individuals without malignancy (25 males, 11 females; mean age 57+/-13 years). Two observers independently evaluated the following WB-MRI sequences: T1w-TSE (T1), T2w-TIRM (T2), and the combination of both sequences, including a contrast-enhanced T1w-TSE with fat-saturation (T1+/-CE/T2). They had to determine growth patterns (focal and/or diffuse) and the MRI sequence that provided the highest confidence level in depicting the MM lesions. Results were calculated on a per-patient basis. RESULTS: Visual detection of MM was as follows: T1, 65% (sensitivity)/85% (specificity); T2, 76%/81%; T1+/-CE/T2, 67%/88%. Inter-observer variability was as follows: T1, 0.3; T2, 0.55; T1+/-CE/T2, 0.55. Sensitivity improved depending on infiltration grade (T1: 1=60%; 2=36%; 3=83%; T2: 1=70%; 2=71%; 3=89%; T1+/-CE/T2: 1=50%; 2=50%; 3=89%) and clinical stage (T1: 1=58%; 2=63%; 3=79%; T2: 1=58%; 2=88%; 3=100%; T1+/-CE/T2: 1=50%; 2=63%; 3=100%). T2w-TIRM sequences achieved the best reliability in depicting the MM lesions (65% in the mean of both readers). CONCLUSIONS: T2w-TIRM sequences achieved the highest level of sensitivity and best reliability, and thus might be valuable for initial assessment of MM. For an exact staging and grading the examination protocol should encompass unenhanced and enhanced T1w-MRI sequences, in addition to T2w-TIRM.
Resumo:
Based on only one objective and several subjective signs, the forensic classification of strangulation incidents concerning their life-threatening quality can be problematic. Reflecting that it is almost impossible to detect internal injuries of the neck with the standard forensic external examination, we examined 14 persons who have survived manual and ligature strangulation or forearm choke holds using MRI technique (1.5-T scanner). Two clinical radiologists evaluated the neck findings independently. The danger to life was evaluated based on the "classical" external findings alone and in addition to the radiological data. We observed hemorrhaging in the subcutaneous fatty tissue of the neck in ten cases. Other frequent findings were hemorrhages of the neck and larynx muscles, the lymph nodes, the pharynx, and larynx soft tissues. Based on the classical forensic strangulation findings with MRI, eight of the cases were declared as life-endangering incidents, four of them without the presence of petechial hemorrhage but with further signs of impaired brain function due to hypoxia. The accuracy of future forensic classification of the danger to life will probably be increased when it is based not only on one objective and several subjective signs but also on the evidence of inner neck injuries. However, further prospective studies including larger cohorts are necessary to clarify the value of the inner neck injuries in the forensic classification of surviving strangulation victims.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate in a phantom study the effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation. MATERIALS AND METHODS: One or two 4-cm-thick circumferential layers of fat-equivalent material were added to the abdomen of an anthropomorphic phantom to simulate patients of three sizes: small (cross-sectional dimensions, 18 x 22 cm), average size (26 x 30 cm), and oversize (34 x 38 cm). Imaging was performed with a 64-MDCT scanner with combined z-axis and xy-axis tube current modulation according to two protocols: protocol A had a noise index of 12.5 H, and protocol B, 15.0 H. Radiation doses to three abdominal organs and the skin were assessed. Image noise also was measured. RESULTS: Despite increasing patient size, the image noise measured was similar for protocol A (range, 11.7-12.2 H) and protocol B (range, 13.9-14.8 H) (p > 0.05). With the two protocols, in comparison with the dose of the small patient, the abdominal organ doses of the average-sized patient and the oversized patient increased 161.5-190.6%and 426.9-528.1%, respectively (p < 0.001). The skin dose increased as much as 268.6% for the average-sized patient and 816.3% for the oversized patient compared with the small patient (p < 0.001). CONCLUSION: Oversized patients undergoing abdominal MDCT with tube current modulation receive significantly higher doses than do small patients. The noise index needs to be adjusted to the body habitus to ensure dose efficiency.
Resumo:
BACKGROUND: The pathology of restless legs syndrome (RLS) is still not understood. To investigate the pathomechanism of the disorder further we recorded a surface electromyogram (EMG) of the anterior tibial muscle during functional magnetic resonance imaging (fMRI) in patients with idiopathic RLS. METHODS: Seven subjects with moderate to severe RLS were investigated in the present pilot study. Patients were lying supine in the scanner for over 50min and were instructed not to move voluntarily. Sensory leg discomfort (SLD) was evaluated on a 10-point Likert scale. For brain image analysis, an algorithm for the calculation of tonic EMG values was developed. RESULTS: We found a negative correlation of tonic EMG and SLD (p <0.01). This finding provides evidence for the clinical experience that RLS-related subjective leg discomfort increases during muscle relaxation at rest. In the fMRI analysis, the tonic EMG was associated with activation in motor and somatosensory pathways and also in some regions that are not primarily related to motor or somatosensory functions. CONCLUSIONS: By using a newly developed algorithm for the investigation of muscle tone-related changes in cerebral activity, we identified structures that are potentially involved in RLS pathology. Our method, with some modification, may also be suitable for the investigation of phasic muscle activity that occurs during periodic leg movements.
Resumo:
In a suicidal gunshot fired to the chest from a carbine, the barrel of which had been shortened to half its original length, an unexpectedly large degree of destruction of the anterior thoracic wall with extensive undermining of the subcutis was found. This phenomenon was investigated for reconstructive purposes by firing test shots from two different long guns (caliber 7.92 x 57 repeating rifle with full-jacketed pointed bullet and caliber 12/70 single-barreled shotgun with shotgun slug) into blocks of soap (38 x 25 x 25 cm). The contact shots were fired before and after shortening the barrels (repeating rifle from 60 to 30 cm and single-barreled shotgun from 72 to 36 cm). The volume of the cavities in the simulant was visualized three-dimensionally with the help of a multislice computed tomography (CT) scanner and calculated sectionally. With the repeating rifle and the single-barreled shotgun, the shots from the sawed-off barrels produced significantly larger cavity diameters in the first section of the bullet track. This effect is attributable to the fact that, with a shortened barrel, the gas pressure at the muzzle is higher, thus, leading to increased expansion in the initial part of the wound track in contact shots.