967 resultados para recombinant cellulase
Resumo:
Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2-azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS) and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.
Resumo:
Cutinase from Thermobifida fusca was used to esterify the hydroxyl groups of cellulose with the fatty acids from triolein. Cutinase and triolein were pre-adsorbed on cotton and the reaction proceeded in a dry state during 48 hours at 35ºC. The cutinase-catalyzed esterification of the surface of cotton fabric resulted in the linkage of the oleate groups to the glycoside units of cotton cellulose. The superficial modification was confirmed by performing ATR-FTIR on treated cotton samples and by MALDI-TOF analysis of the liquors from the treatment of the esterified cotton with a crude cellulase mixture. Modified cotton fabric also showed a significant increase of hydrophobicity. This work proposes a novel bio-based approach to obtain hydrophobic cotton. This article is protected by copyright. All rights reserved.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Estudi elaborat a partir d’una estada al Laboratori de Inmunopatología del SIDA del Dr Alcamí a l’Instituto de Salud Carlos III-Centro Nacional de Microbiologia, entre finals de desembre de 2006 i març de 2007. L’objectiu ha estat millorar la caracterització de l’envolta del VIH-1 mitjançant l’obtenció de virus recombinants, ja que això permet estudiar l’envolta viral tant genètica com fenotípicament. En aquest cas, s’ha estudiat l'envolta viral dels pacients sotmesos a vacunació terapèutica amb cèl•lules dendrítiques polsades amb virus autòlegs. Durant aquesta estada es realitza un aprenentatge profund de les tècniques adequades per a l'amplificació i clonatge del gen complet de l'envolta del VIH-1 (env), així com de l’obtenció de virus recombinants amb l’envolta del pacient i els corresponents assaigs de tropisme viral i neutralització sèrica. Aquesta metodologia empra el virus quimèric pNL4.3 delta_env Renilla, construït a partir del virus de referència NL4.3 i que té dues característiques importants: la primera és que conté un gen marcador Renilla, que a l’interior de les cèl•lules infectades té activitat luciferasa. La utilització del virus pNL4.3 delta_env Renilla en assaigs de neutralització presenta diversos avantatges front altres assaigs més convencionals, tant a nivell de sensibilitat i especificitat com d’estalvi de temps.
Resumo:
Interferon-gamma (IFN-gamma) modulates the expression of Class II major histocompatibility antigens (MHC), thus providing a potential regulatory mechanism for local immune reactivity in the context of MHC-restricted antigen presentation. Within the central nervous system (CNS), the expression of MHC Class II antigens has been demonstrated on human reactive astrocytes and glioma cells. In order to investigate the modulation of HLA-DR on normal astrocytes, two cell lines were grown from a 20-week-old fetal brain. In situ none of the fetal brain cells expressed HLA-DR as determined by immunohistology on frozen tissue sections. The two cell lines, FB I and FB II, expressed GFAP indicating their astrocytic origin. FB I was HLA-DR negative at the first tissue culture passages, but could be induced to express HLA-DR when treated with 500 U/ml IFN-gamma. FB II was spontaneously HLA-DR positive in the early passages, lost the expression of this antigen after 11 passages and could also be induced to express HLA-DR by IFN-gamma. The induction of HLA-DR expression was demonstrated both by a binding RIA and by immunoprecipitation using a monoclonal antibody (MAB) directed against a monomorphic determinant of HLA-DR. The HLA-DR alloantigens were determined on FB II cells after IFN-gamma treatment, by immunofluorescence and by cytotoxicity assays, and were shown to be DR4, DR6, Drw52, DRw53 and DQwl. These results show that human fetal astrocytes can be induced to express HLA-DR by IFN-gamma in vitro and support the concept that astrocytes may function as antigen-presenting cells.
Resumo:
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1 transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.
Resumo:
Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.