964 resultados para rearing apparatus
Resumo:
The chalazal megaspore develops in a Polygonum-type embryo sac. The amyloplast-rich endothelium is partially degraded during the expansion of the micropylar portion of the megagametophyte. Organization of the mature embryo sac is determined by the patterns of vacuolation, nuclear migration, spindle orientation and cellularization. The egg cell is slightly chalazal in relation to the synergids, and its micropylar end does not touch the micropylar channel. At the chalazal pole of the egg apparatus, the common walls between the synergids, the egg and central cells, despite their tenuity, are present in the mature megagametophyte. The polar nuclei do not fuse before fertilization and the antipodals are persistent until the first stages of endosperm formation. The taxonomic significance of some embryological characters for the Bignoniaceae is discussed.
Resumo:
The female gametophyte has a monosporic origin and a Polygonum type development. The female gametophyte growth consumes a large part of the neighboring nucellar cells and, in the micropylar region, part of the nucellar epidermis and internal integument. The mature gametophyte is composed of only four cells due to the ephemeral characteristic of the antipodals. The synergids are pear-shaped cells with the formation of filiform apparatus. Their nuclei lie in the micropylar region and large vacuoles in the chalazal region, while the egg cell presents an opposite polarization. The central cell accumulates starch grains and the two polar nuclei approach the egg. Occasional development of two gametophytes was recorded. The closest to the micropyle develops fully, while the chalazal one remained in the tetranucleated stage. The embryological characters of A. latifolia are compared with those of other taxa within the Leguminosae, and the reproductive importance of multiple gametophyte formation for this species was discussed.
Resumo:
Cupuassu (Theobroma grandiflorum (Willd. ex Spreng.) Schumann) is a fruit tree that is attracting attention in Brazil and also in other tropical countries. Its pulp is used to prepare ice-cream, juices, jellies and many other home-made sweets. This species has a very low fecundity, attributed to problems with pollination and self-incompatibility, noted as being restrictive to the agronomic productivity of the species. Controlled pollinations between compatible and incompatible parents were made and flowers were collected at three times: 24, 48 and 72 h after pollinations, during the floral seasons of 1995 and 1998. In flowers collected 24 h after pollination, in both compatible and incompatible crosses, around 70% of ovules showed egg apparatus without evidences of sperm cell delivery; nevertheless some pollen tubes had been observed. Ovaries collected at 48 h showed different behaviors according to the type of cross. In the compatibles, 35% of ovules did not show evidences of gamete fusion. In incompatible crosses this number rose to 50%. Collected ovaries with 72 h, from compatible and incompatible crosses, showed respectively 1.2% and 14.2% of the ovules with the egg apparatus and polar nuclei only. In these ovaries, for the two types of crosses, the presence of sperm nuclei was common and the zygote was still undivided. The incompatibility action is occurring after fertilization, in a late self-incompatibility action.
Resumo:
Initially identified as stress activated protein kinases (SAPKs), the c-Jun Nterminal kinases (JNKs) are currently accepted as potent regulators of various physiologically important cellular events. Named after their competence to phosphorylate transcription factor c-Jun in response to UVtreatment, JNKs play a key role in cell proliferation, cell death or cell migration. Interestingly, these functions are crucial for proper brain formation. The family consists of three JNK isoforms, JNK1, JNK2 and JNK3. Unlike brain specific JNK3 isoform, JNK1 and JNK2 are ubiquitously expressed. It is estimated that ten splice variants exist. However, the detailed cellular functions of these remain undetermined. In addition, physiological conditions keep the activities of JNK2 and JNK3 low in comparison with JNK1, whereas cellular stress raises the activity of these isoforms dramatically. Importantly, JNK1 activity is constitutively high in neurons, yet it does not stimulate cell death. This suggests a valuable role for JNK1 in brain development, but also as an important mediator of cell wellbeing. The aim of this thesis was to characterize the functional relationship between JNK1 and SCG10. We found that SCG10 is a bona fide target for JNK. By employing differential centrifugation we showed that SCG10 co-localized with active JNK, MKK7 and JIP1 in a fraction containing endosomes and Golgi vesicles. Investigation of JNK knockout tissues using phosphospecific antibodies recognizing JNK-specific phosphorylation sites on SCG10 (Ser 62/Ser 73) showed that phosphorylation of endogenous SCG10 was dramatically decreased in Jnk1-/- brains. Moreover, we found that JNK and SCG10 co-express during early embryonic days in brain regions that undergo extensive neuronal migration. Our study revealed that selective inhibition of JNK in the cytoplasm significantly increased both the frequency of exit from the multipolar stage and radial migration rate. However, as a consequence, it led to ill-defined cellular organization. Furthermore, we found that multipolar exit and radial migration in Jnk1 deficient mice can be connected to changes in phosphorylation state of SCG10. Also, the expression of a pseudo-phosphorylated mutant form of SCG10, mimicking the JNK1- phopshorylated form, brings migration rate back to normal in Jnk1 knockout mouse embryos. Furthermore, we investigated the role of SCG10 and JNK in regulation of Golgi apparatus (GA) biogenesis and whether pathological JNK action could be discernible by its deregulation. We found that SCG10 maintains GA integrity as with the absence of SCG10 neurons present more compact fragmented GA structure, as shown by the knockdown approach. Interestingly, neurons isolated from Jnk1-/- mice show similar characteristics. Block of ER to GA is believed to be involved in development of Parkinson's disease. Hence, by using a pharmacological approach (Brefeldin A treatment), we showed that GA recovery is delayed upon removal of the drug in Jnk1-/- neurons to an extent similar to the shRNA SCG10-treated cells. Finally, we investigated the role of the JNK1-SCG10 duo in the maintenance of GA biogenesis following excitotoxic insult. Although the GA underwent fragmentation in response to NMDA treatment, we observed a substantial delay in GA disintegration in neurons lacking either JNK1 or SCG10.