968 resultados para pk-yrittäjyys
Resumo:
A search for associated production of charginos and neutralinos is performed using data recorded with the D0 detector at a p (p) over bar center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. This analysis considers final states with missing transverse energy and three charged leptons, of which at least two are electrons or muons. No evidence for supersymmetry is found in a data set corresponding to an integrated luminosity of 320 pb(-1). Limits on the product of the production cross section and leptonic branching fraction are set. For the minimal supergravity model, a chargino lower mass limit of 117 GeV at the 95% C.L. is derived in regions of parameter space with enhanced leptonic branching fractions.
Resumo:
We present the results of a search for the effects of large extra spatial dimensions in p (p) over bar collisions at root s = 1: 96 TeV in events containing a pair of energetic muons. The data correspond to 246 pb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider. Good agreement with the expected background was found, yielding no evidence for large extra dimensions. We set 95% C. L. lower limits on the fundamental Planck scale between 0.85 and 1.27 TeV within several formalisms. These are the most stringent limits achieved in the dimuon channel to date.
Resumo:
We present a search for the standard model Higgs boson in H -> WW(*) decays with e(+)e(-), e(+/-)mu(-/+), and mu(+)mu(-) final states in p (p) over bar collisions at a center-of-mass-energy of root s = 1.96 TeV. The data, collected from April 2002 to june 2004 with the D0 detector, correspond to an integrated luminosity of 300-325 pb(-1), depending on the final state. The number of events observed is consistent with the expectation from backgrounds. Limits from the combination of all three channels on the Higgs boson production cross section times branching ratio sigma x BR(H -> WW(*)) are presented.
Resumo:
Neutrino oscillations are treated from the point of view of relativistic first quantized theories and compared to second quantized treatments. Within first quantized theories, general oscillation probabilities can be found for Dirac fermions and charged spin 0 bosons. A clear modification in the oscillation formulas can be obtained and its origin is elucidated and confirmed to be inevitable from completeness and causality requirements. The left-handed nature of created and detected neutrinos can also be implemented in the first quantized Dirac theory in the presence of mixing; the probability loss due to the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in analytic form. Concerning second quantized approaches, it is shown in a calculation using virtual neutrino propagation that both neutrinos and antineutrinos may also contribute as intermediate particles. The sign of the contributing neutrino energy may have to be chosen explicitly without being automatic in the formalism. At last, a simple second quantized description of the flavor oscillation phenomenon is devised. In this description there is no interference terms between positive and negative components, but it still gives simple normalized oscillation probabilities. A new effect appearing in this context is an inevitable but tiny violation of the initial flavor of neutrinos. The probability loss due to the conversion of left-handed neutrinos to right-handed neutrinos is also presented.
Resumo:
We show that the extension of the approximate custodial SU(2)(L+R) global symmetry to all the Yukawa interactions of the standard model Lagrangian implies the introduction of sterile right-handed neutrinos and the seesaw mechanism in this sector. In this framework, the observed quark and lepton masses may be interpreted as an effect of physics beyond the standard model. The mechanism used for breaking this symmetry in the Yukawa sector could be different from the one at work in the vector boson sector. We give three model independent examples of these mechanisms.
Resumo:
We present the first experimental discrimination between the 2e/3 and 4e/3 top quark electric charge scenarios, using top quark pairs (t (t) over bar) produced in p (p) over bar collisions at root s =1.96 TeV by the Fermilab Tevatron Collider. We use 370 pb(-1) of data collected by the D0 experiment and select events with at least one high transverse momentum electron or muon, high transverse energy imbalance, and four or more jets. We discriminate between b- and (b) over bar -quark jets by using the charge and momenta of tracks within the jet cones. The data are consistent with the expected electric charge, |q|=2e/3. We exclude, at the 92% C.L., that the sample is solely due to the production of exotic quark pairs Q (Q) over bar with |q|=4e/3. We place an upper limit on the fraction of Q (Q) over bar pairs rho < 0.80 at the 90% C.L.
Resumo:
We report a search for the standard model (SM) Higgs boson based on data collected by the D0 experiment at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 260 pb(-1). We study events with missing transverse energy and two acoplanar b jets, which provide sensitivity to the ZH production cross section in the nu nu bb channel, and to WH production when the lepton from the W ->center dot nu decay is undetected. The data are consistent with the SM background expectation, and we set 95% C.L. upper limits on sigma(pp -> ZH/WH) x B(H -> bb) from 3.4/8.3 to 2.5/6.3 pb, for Higgs-boson masses between 105 and 135 GeV.
Resumo:
We consider the critical short-time evolution of magnetic and droplet-percolation order parameters for the Ising model in two and three dimensions, through Monte Carlo simulations with the (local) heat-bath method. We find qualitatively different dynamic behaviors for the two types of order parameters. More precisely, we find that the percolation order parameter does not have a power-law behavior as encountered for the magnetization, but develops a scale (related to the relaxation time to equilibrium) in the Monte Carlo time. We argue that this difference is due to the difficulty in forming large clusters at the early stages of the evolution. Our results show that, although the descriptions in terms of magnetic and percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times. In particular, this concerns the attempts to describe the dynamics of the deconfinement phase transition in QCD using cluster observables.