998 resultados para phosphate sources
Resumo:
This article presents a case study of Lower Lough Erne, a humic, alkaline lake in northwest Ireland, and uses the radiocarbon method to determine the source and age of carbon to establish whether terrestrial carbon is utilized by heterotrophic organisms or buried in sediment. Stepped combustion was used to estimate the degree of the burial of terrestrial carbon in surface sediment. ∆14C, δ13C, and δ15N values were measured for phytoplankton, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC). ∆14C values were used to indicate the presence of different sources of carbon, including bedrock-derived inorganic carbon, “modern,” “recent,” “subsurface,” and “subfossil” terrestrial carbon in the lake. The use of 14C in conjunction with novel methods (e.g. stepped combustion) allows the determination of the pathway of terrestrial carbon in the system, which has implications for regional and global carbon cycling.
Resumo:
The nature of photon interaction and reaction pH can have significant impacts on semiconductor photocatalysis. This paper describes the effect of pH on the photonic efficiency of photocatalytic reactions in the aqueous phase using TiO2 catalysts. The reactor was irradiated using periodic illumination with UV-LEDs through control of the illumination duty cycle (γ) through a series of light and dark times (Ton/Toff). Photonic efficiencies for methyl orange degradation were found to be comparable at high γ irrespective of pH. At lower γ, pH effects on photonic efficiency were very distinct across acidic, neutral and alkaline pH indicating an effect of complementary parameters. The results suggest photonic efficiency is greatest as illumination time, Ton approaches interfacial electron-transfer characteristic time which is within the range of this study or charge-carrier lifetimes upon extrapolation and also when electrostatic attraction between surface-trapped holes, {TiIVOH}ads+ and substrate molecules is strongest.
Resumo:
In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p < 0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (< 20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy.
Resumo:
The chemical compositions of calcium phosphate materials are similar to that of bone making them very attractive for use in the repair of critical size bone defects. The bioresorption of calcium phosphate occurs principally by dissolution. To determine the impact of composition and flow conditions on dissolution rates, calcium phosphate tablets were prepared by slip casting of ceramic slips with different ratios of hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP). Dissolution was evaluated at pH4 using both a static and dynamic flow regime. Both the composition of the HA:ß-TCP tablet and flow regime noticeably influenced the rate of dissolution; the 50:50 HA:ß-TCP composition demonstrating the greatest level of dissolution, and, exposure of the ceramic specimens to dynamic conditions producing the highest rate of dissolution. Understanding the impact of phase composition and flow condition with respect to the dissolution of calcium phosphate will aid in the development and improvement of materials for bone substitution.
Resumo:
To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD) could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling), while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau) coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.
Resumo:
A novel selective fluorescent chemosensor based on naphthalimide derivatives (AN-SB) was synthesized and characterized. Once combined with Cu2+, compound AN-SB could give rise to a visible yellow to orange color change and fluorescence quenching, while other metal ions showed subtle disturbance. The complex (AN-SB-Cu2+) formed by Cu2+ and AN-SB displayed high specificity for H2PO4-. Among the various anions, only H2PO4- induced the revival of color and fluorescence of AN-SB, resulting in "off-on" type sensing of H2PO4- anion. The signal transduction occured via reversible formation-separation of complex AN-SB-Cu2+, however, slight changes were observed in the presence of other anions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Here is detailed a novel and low-cost experimental method for high-throughput automated fluid sample irradiation. The sample is delivered via syringe pump to a nozzle, where it is expressed in the form of a hanging droplet into the path of a beam of ionising radiation. The dose delivery is controlled by an upstream lead shutter, which allows the beam to reach the droplet for a user defined period of time. The droplet is then further expressed after irradiation until it falls into one well of a standard microplate. The entire system is automated and can be operated remotely using software designed in-house, allowing for use in environments deemed unsafe for the user (synchrotron beamlines, for example). Depending on the number of wells in the microplate, several droplets can be irradiated before any human interaction is necessary, and the user may choose up to 10 samples per microplate using an array of identical syringe pumps, the design of which is described here. The nozzles consistently produce droplets of 25.1 ± 0.5 μl.
Resumo:
Objectives: To quantify variability in hand proportioning of zinc phosphate cement among a cohort of dental undergraduates and to determine the effect of any such variability on the diametral tensile strength (DTS) of the set cement. The null hypothesis was that such variability has no effect on DTS.
Methods: Thirty-four operators dispensed a zinc phosphate cement [Fleck's® Cement] according to the manufacturers' instructions. The mass of powder and liquid dispensed was recorded. Cylindrical specimens (n = 2 x 34) of dimensions 6mm x 3mm were prepared using a stainless steel split mould. The maximum mass of powder and the minimum volume of liquid were used as one extreme ratio and the minimum mass of powder and the maximum volume of liquid used on the other extreme. The manufacturers' recommended ratio was also tested (n=34).The samples were left to set for one hour before being transferred into distilled water for 48 hours. Compression across a diameter was carried out using a universal testing machine, H10KS [Tinius Olsen], at a constant crosshead speed of 0.75 ±0.25 mm/min. Statistical analyses (α = 0.05) were by Student's t-test for the powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. Tests were carried out for normality and constant variability.
Results: The mean (range) amount of powder dispensed was 0.863g (0.531-1.216)g. The mean (range) amount of liquid dispensed was 0.341ml (0.265-0.394)ml. The manufacturer's recommended amounts were 0.8g of powder and 0.3ml of liquid. The mean powder/liquid ratio was not significantly different from the manufacturer's recommended value (p=0.64). Mean (SD) DTS were (MPa) max: 7.19(1.50), min: 2.65(1.01), manufacturer: 6.01(1.30). All pair-wise comparisons were significantly different (p<0.001).
Conclusions: Variability exists in the hand proportioning powder and liquid components of zinc phosphate cement. This variability can affect the DTS of zinc phosphate cement.