969 resultados para peach leaf curl
Resumo:
We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.
Resumo:
Maps depicting spatial pattern in the stability of summer greenness could advance understanding of how forest ecosystems will respond to global changes such as a longer growing season. Declining summer greenness, or “greendown”, is spectrally related to declining near-infrared reflectance and is observed in most remote sensing time series to begin shortly after peak greenness at the end of spring and extend until the beginning of leaf coloration in autumn,. Understanding spatial patterns in the strength of greendown has recently become possible with the advancement of Landsat phenology products, which show that greendown patterns vary at scales appropriate for linking these patterns to proposed environmental forcing factors. This study tested two non-mutually exclusive hypotheses for how leaf measurements and environmental factors correlate with greendown and decreasing NIR reflectance across sites. At the landscape scale, we used linear regression to test the effects of maximum greenness, elevation, slope, aspect, solar irradiance and canopy rugosity on greendown. Secondly, we used leaf chemical traits and reflectance observations to test the effect of nitrogen availability and intrinsic water use efficiency on leaf-level greendown, and landscape-level greendown measured from Landsat. The study was conducted using Quercus alba canopies across 21 sites of an eastern deciduous forest in North America between June and August 2014. Our linear model explained greendown variance with an R2=0.47 with maximum greenness as the greatest model effect. Subsequent models excluding one model effect revealed elevation and aspect were the two topographic factors that explained the greatest amount of greendown variance. Regression results also demonstrated important interactions between all three variables, with the greatest interaction showing that aspect had greater influence on greendown at sites with steeper slopes. Leaf-level reflectance was correlated with foliar δ13C (proxy for intrinsic water use efficiency), but foliar δ13C did not translate into correlations with landscape-level variation in greendown from Landsat. Therefore, we conclude that Landsat greendown is primarily indicative of landscape position, with a small effect of canopy structure, and no measureable effect of leaf reflectance. With this understanding of Landsat greendown we can better explain the effects of landscape factors on vegetation reflectance and perhaps on phenology, which would be very useful for studying phenology in the context of global climate change
Resumo:
In the last decade, research in Computer Vision has developed several algorithms to help botanists and non-experts to classify plants based on images of their leaves. LeafSnap is a mobile application that uses a multiscale curvature model of the leaf margin to classify leaf images into species. It has achieved high levels of accuracy on 184 tree species from Northeast US. We extend the research that led to the development of LeafSnap along two lines. First, LeafSnap’s underlying algorithms are applied to a set of 66 tree species from Costa Rica. Then, texture is used as an additional criterion to measure the level of improvement achieved in the automatic identification of Costa Rica tree species. A 25.6% improvement was achieved for a Costa Rican clean image dataset and 42.5% for a Costa Rican noisy image dataset. In both cases, our results show this increment as statistically significant. Further statistical analysis of visual noise impact, best algorithm combinations per species, and best value of , the minimal cardinality of the set of candidate species that the tested algorithms render as best matches is also presented in this research
Resumo:
Tasmannia lanceolata, commonly known as Tasmanian pepper leaf or mountain pepper, is an Australian native plant that produces an essential oil with a characteristic pungent flavor attributed to the sesquiterpene polygodial. The dried and fresh leaves are used in culinary applications. The essential oil is produced by a solvent extraction process, and the resultant concrete is a rich source of the principal pungent molecule polygodial and other volatiles. The Tasmanian pepper leaf extract has broad-spectrum antimicrobial activity and is very effective against fungi, especially yeasts. This demonstrates its potential to be used in the food industry as a natural preservative. Indigenous Australians have used Tasmanian pepper leaves for therapeutic purposes; in recent times, it is been used as a flavoring agent and enhancer of pungency in food products. This chapter covers the use of Tasmanian pepper leaf essential oil in food applications, its botanical aspects, and its chemical composition.
Resumo:
Character states used in distinguishing taxa within the Thripidae subfamily Dendrothripinae are discussed, and a key presented to the 11 genera recognized worldwide. Comments on each of these genera are provided, together with keys to the species from Australia of Dendrothrips, Ensiferothrips and Pseudodendrothrips. From Australia are described, four new species of Dendrothrips, one of Pseudodendrothrips, and a remarkable new species of Ensiferothrips that has required a re-diagnosis of that genus. Another new species of Ensiferothrips is described from Sulawesi, thus greatly extending the known geographical range of this previously Australian genus. © 2016 Magnolia Press.
Resumo:
Leaf bags of fine and coarse mesh were placed at two locations, one with an open tree canopy, the other with a closed tree canopy, in Pynn’s Brook on June 30th 2015. Bags were collected after 2, 30, 37 and 44 days. After collection, invertebrates were counted and leaf material remaining was determined to measure leaf breakdown rate. There was no significant difference in leaf mass remaining (R) between the two sites. Comparisons between mesh types found a difference in leaf breakdown at two collection days. The difference at 2 days was small (2.7%) and may not be biologically meaningful. At 37 days, the difference was larger (8.41%) and may be related to a larger proportion of shredder taxa, seen in coarse mesh bags, or higher absolute numbers of invertebrates. The invertebrate community was dominated by Diptera spp. across all collection days and mesh types, but after 37 days, communities in coarse mesh bags had a higher proportion of shredder orders than did fine mesh bags.
Resumo:
Trichoderma isolates were obtained from diseased leaves and fruit collected from plantations in the main banana production area in Northern Queensland. Phylogenetic analyses identified the Trichoderma isolates as T. harzianum and T. virens. The Trichoderma spp. were found to be antagonistic against the banana leaf pathogens Mycosphaerella musicola, Cordana musae, and Deight-oniella torulosa in vitro. Several products used by the banana industry to increase production, including molasses, Fishoil and Seasol, were tested as food source for the Trichoderma isolates. The optimal food substrate was found to be molasses at a concentration of 5 %, which when used in combination with a di-1-p-menthene spreader-sticker enhanced the survivability of Trichoderma populations under natural conditions. This formulation suppressed D. torulosa development under glasshouse conditions. Furthermore, high sensitivity was observed towards the protectant fungicide Mancozeb but Biopest oil (R), a paraffinic oil, only marginally suppressed the growth of Trichoderma isolates in vitro. Thus, this protocol represents a potential to manage banana leaf pathogens as a part of an integrated disease approach.
Resumo:
The purpose of this thesis is to provide research, supporting paperwork, production photographs and other materials that document the scenic design process for James and the Giant Peach at Adventure Theatre MTC. This thesis contains the following: concept statement, scenic research images collected to express location, and the emotional/ intellectual/ psychological landscapes for the production, preliminary sketches, photographs of the ¼” scale model, drafting plates and supporting paint elevations to communicate the design, prop list and accompanying research, archival production photographs to document the completed design, and finally periodical reviews of the show.