986 resultados para parasitic nematode
Resumo:
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
Resumo:
P>1. Root herbivores and pathogens interfere with basic below-ground plant function, and can thereby affect plant fitness and spatial and temporal patterns in natural plant communities. However, there has been little development of concepts and theories on below-ground plant defence, a deficit that is in contrast to the abundance of theorizing for above-ground plant parts.2. A review of the past 10 years of research on below-ground plant-herbivore interactions has revealed that, similar to above-ground tissues, root defences can be expressed constitutively or induced upon herbivore attack, and can be classified into direct and indirect traits, tolerance, and escape. Indeed, it has been shown that roots tolerate herbivory by outgrowing or re-growing lost tissues, or resist it by producing secondary metabolites that are toxic to herbivores or attract natural enemies of herbivores.3. We propose that, similar to above-ground plant-herbivore theories, the partition of abiotic and biotic factors over ecological succession can serve as the basis for predicting investment in defence strategies below-ground.4. Investigation of herbivore pressure and root responses along primary and secondary successional gradients suggests that: (i) roots are often fast growing, thinner and softer in early compared to later succession. (ii) Insect and nematode herbivore pressure increases until mid-succession and later decreases. (iii) Mycorrhizal abundance increases with succession, and the composition of fungal species changes through succession, often shifting from arbuscular mycorrhizae to ecto-mycorrhizae.5. Based on these findings, and on classical (above-ground) plant defence theory, we suggest the following set of testable hypotheses for below-ground plant defence: (i) During succession, early plants invest most of their resources in growth and less in defences (associated with a general lack of herbivores and pathogens, and with limited availability of resources in the system), therefore relying more on re-growth (tolerance) strategies. (ii) During mid-succession, a buildup of herbivore pressure facilitates replacement by plant species that exhibit greater direct and indirect defence strategies. (iii) Constitutive and inducible levels of defences may trade-off, and early successional plants should rely more on induction of defences after herbivore attack, whereas late successional plants will increasingly rely on constitutively produced levels of physical and chemical defence. (iv) Successional changes in microbial associations have consequences for root defence by improving plant nutrition and defence expression as well as directly competing for root space; however, toxic or impenetrable root defences may also limit association with root symbionts, and so may constrain the expression of root defence.
Resumo:
INTRODUCTION: Partial splenectomy in children is a good surgical option for hematological diseases and focal splenic tumors because it allows the preservation of the spleen's immunological function. Furthermore, it can be performed by laparoscopy in children as it is a safe procedure, offering the benefits of a minimally invasive approach. MATERIALS AND METHODS: The software VR-render LE version 0.81 is a system that enables the visualization of bidimentional 3D images with magnification of anatomical details. We have applied this system to five cases of non-parasitic splenic cysts before laparoscopic partial splenectomy. RESULTS: The images obtained with VR rendering software permitted the preoperative reconstruction of the vascularization of the splenic hilum, allowing the surgeon safe vessel control during laparoscopic procedures. All five partial splenectomies were carried out with no complications or major blood loss. CONCLUSIONS: Laparoscopic partial splenectomy should be a first choice procedure because it is feasible, reproducible, and safe for children; furthermore, it preserves enough splenic tissue thereby preventing post-splenectomy infections. Volume rendering provides high anatomical resolution and can be useful in guiding the surgical procedure.
Resumo:
Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.
Resumo:
Veterans of infection, Leishmania parasites have been plaguing mammals for centuries, causing a morbidity toll second only to that of malaria as the most devastating protozoan parasitic disease in the world. Cutaneous leishmaniasis (CL) is, by far, the most prevalent form of the disease, with symptoms ranging from a single self-healing lesion to chronic metastatic leishmaniasis (ML). In an increasingly immunocompromised population, complicated CL is becoming a more likely outcome, characterized by severely inflamed, destructive lesions that are often refractory to current treatment. This is perhaps because our ageing arsenal of variably effective antileishmanial drugs may be directly or indirectly immunomodulatory and may thus have variable effects in each type and stage of CL. Indeed, widely differing immune biases are created by the various species of Leishmania, and these immunological watersheds are further shifted by extrinsic disturbances in immune homeostasis. For example, we recently showed that a naturally occurring RNA virus (Leishmania RNA virus (LRV)) within some Leishmania parasites creates hyperinflammatory cross-talk, which can predispose to ML: a case of immunological misfire that may require a different approach to immunotherapy, whereby treatments are tailored to underlying immune biases. Understanding the intersecting immune pathways of leishmaniasis and its co-infections will enable us to identify new drug targets, and thereby design therapeutic strategies that work by untangling the immunological cross-wires of pathogenic cross-talk.
Resumo:
In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.
Resumo:
Inductive-based devices integrated with Si technology for biodetection applications are characterized, using simple resonant differential filter configurations. This has allowed the corroboration of the viability of the proposed circuits, which are characterized by their very high simplicity, for microinductive signal conditioning in high-sensitivity sensor devices. The simulation of these simple circuits predicts sensitivities of the differential output voltage which can achieve values in the range of 0.1-1 V/nH, depending on the coil parameters. These very high-sensitivity values open the possibility for the experimental detection of extremely small inductance changes in the devices. For real microinductive devices, both series resistance and parasitic capacitive components contribute to the decrease of the differential circuit sensitivity. Nevertheless, measurements performed using micro-coils fabricated with relatively high series resistance and coupling parasitic effects have allowed detection of changes in the range of 2 nH. which are compatible with biodetection applications with estimated detection limits below the picomolarity range.
Resumo:
Host defense to intracellular pathogens depends upon both innate and adaptive cell-mediated immune responses. Polymorphonuclear neutrophil leukocytes which belong to the innate immune system are the first cells that are recruited massively within hours of microbial infection. Neutrophils are the main players in the killing of microorganisms and recently new methods of killing including nets formation have been described. Neutrophils mediate tissue damage at infected sites. By promoting tissue injury neutrophils contribute to the initiation of inflammation, which is now recognized as an essential step in launching immunity. The importance of neutrophils as decision shaper in the development of an immune response is only emerging as they have long been considered by immunologists as short lived, non-dividing cells, of poor interest. Now, neutrophils are emerging as key components of the inflammatory response, and are shown to have immunoregulatory roles in microbial infections. In addition, neutrophils were also reported to contribute to the recruitment and activation of antigen presenting cells. Thus early interactions between neutrophils and surrounding cells may influence the development/resolution of both inflammatory lesion and pathogen-specific immune response. The impact of neutrophils on cells present at the site of infection are only beginning to be studied and deserves more attention.In this e-book the reader will find updated information about the role of neutrophils in the pathogenesis of 1) bacterial diseases including sepsis, mycobacteria and Chlamydia infections, and of 2) parasitic diseases including leishmaniasis and toxoplasmosis. The role of neutrophils in the protection against microorganisms has largely been underestimated and, until recently, their role was mostly thought to limited to a "kill and die" response. New neutrophil mode of killing, such as their release of extracellular traps to kill extracellular bacterial pathogens, together with several microbial strategies designed to escape NETs are presented in Chapter 1. We will emphasize standard and advanced light microscopy techniques that allowed major advances in the understanding of neutrophil biology, through the visualization of the interaction of selected pathogens with neutrophils in living animals (Chapter 2).The aim of this e-book is to provide an overview of the recent advances made in the field of neutrophil biology. It will provide a basis for understanding future development that will occur in this area, and provide the reader with a short overview of some of the exciting new directions in which neutrophil research is moving.
Resumo:
A 11 months old female infant from Portugal, free of family history, consults for apathy, weight loss, tachycardia, tachypnea, petechiae, pallor without icterus and hepatoslenomegaly. Seven months earlier, while being in Portugal, she presented a persistent bluish pimple on her buttock. Laboratory results showed anemia (35 g/l), leucopenia (3.3 G/l), thrombocytopenia (13 G/l), impaired coagulation (INR 1.4, PTT 41 sec.), hyponatremia (124 mmol/l), elevated CRP (139 mg/l), high ferritin (34.775 μg/l) and high triglycerides (5.22 mmol/l). After correction of vital parameters, a bone marrow aspiration and biopsy (BMB) revealed both the etiological diagnosis, namely a visceral leishmaniasis (VL) as well as one of its potential complications, the hemophagocytic syndrome (HS). Transfusions of whole blood, platelets and fresh frozen plasma were immediately started. Dexamethasone (10 mg/m2) and amphotericin B (3 mg/kg/day) have also been administrated. Visceral leishmaniasis is caused by a protozoan (Leishmania donovani) transmitted by the female sandfly. It is endemic in the Mediterranean basin (including France, Italy, Spain and Portugal), South America, sub-Saharan Africa as well as in India and Bangladesh. The parasite infects macrophages and, after several weeks of incubation, the disease occurs by affection of bloodlines (anemia, leucopenia, thrombocytopenia), hepatosplenomegaly, cachexia, gastrointestinal damage. The complications of the disease may lead to death. Liposomal amphotericin B is the currently recommended treatment. HS is caused by the proliferation and activation of macrophages in the marrow in response to a cytokine storm. It may be of primary cause. When it is secondary, it may be related to infections such as leishmaniasis. Patients present with fever and laboratory diagnostic criteria include cytopenia, hypertriglyceridemia, high ferritin and hemophagocytosis in the BMB. The treatment consists among other in the administration of high doses corticosteroids and, in secondary cases, in the treatment of the underlying cause. In conclusion, the clinical and biological features of VL may mimic haematological disorders as leukemia, but an enlargement of the liver and especially of the spleen should remind in this parasitic infection and its potential fatal complication, the HS.
Resumo:
Knowledge of the role of origin-related, environmental, sex, and age factors on host defence mechanisms is important to understand variation in parasite intensity. Because alternative components of parasite defence may be differently sensitive to various factors, they may not necessarily covary. Many components should therefore be considered to tackle the evolution of host-parasite interactions. In a population of barn owls (Tyto alba), we investigated the role of origin-related, environmental (i.e. year, season, nest of rearing, and body condition), sex, and age factors on 12 traits linked to immune responses [humoral immune responses towards sheep red blood cells (SRBC), human serum albumin (HSA) and toxoid toxin TT, T-cell mediated immune response towards the mitogen phytohemagglutinin (PHA)], susceptibility to ectoparasites (number and fecundity of Carnus haemapterus, number of Ixodes ricinus), and disease symptoms (size of the bursa of Fabricius and spleen, proportion of proteins that are immunoglobulins, haematocrit and blood concentration in leucocytes). Cross-fostering experiments allowed us to detect a heritable component of variation in only four out of nine immune and parasitic parameters (i.e. SRBC- and HSA-responses, haematocrit, and number of C. haemapterus). However, because nestlings were not always cross-fostered just after hatching, the finding that 44% of the immune and parasitic parameters were heritable is probably an overestimation. These experiments also showed that five out of these nine parameters were sensitive to the nest environment (i.e. SRBC- and PHA-responses, number of C. haemapterus, haematocrit and blood concentration in leucocytes). Female nestlings were more infested by the blood-sucking fly C. haemapterus than their male nestmates, and their blood was less concentrated in leucocytes. The effect of year, season, age (i.e. reflecting the degree of maturation of the immune system), brood size, position in the within-brood age hierarchy, and body mass strongly differed between the 12 parameters. Different components of host defence mechanisms are therefore not equally heritable and sensitive to environmental, sex, and age factors, potentially explaining why most of these components did not covary.
Resumo:
Fertilization and/or the accumulation of organic matter from plant residues can influence the composition of soil and litter community. The goal of this study was to evaluate the effects of P and K fertilization on total faunal and nematode faunal composition and richness in plant litter and soil for 360 days in an area reforested with Acacia auriculiformis (A. Cunn), located in the municipality of Conceição de Macabu in the State of Rio de Janeiro. For each treatment (fertilized and unfertilized plots), samples of litter and soil (to a depth of 5 cm) were collected and transferred into a Berlese-Tüllgren funnels for the extraction of fauna. Mesofauna and macrofauna were quantified, and the major taxa identified. Nematodes were extracted by centrifugal flotation in sucrose solution and identified according to feeding habits. Density (number of individuals m-2) of total fauna, microphages, social insects and saprophages varied significantly per treatment and sampling time in both litter and soil. The total number of individuals collected was 5,127, and the total number of nematodes 894. Phosphorus and potassium fertilization resulted in an increase in total fauna density and richness in the litter due to an increased abundance of social insects, saprophages and herbivores. In the soil, fertilization increased the saprophage and predator densities. Saprophages were the predominant taxa in the litter, while social insects (Formicidae) prevailed in the soil. Litter nematode populations were favored by mineral fertilization. Bacteriophages were the predominant nematode group in both litter and soil.
Synthesis, structure, and magnetic studies on self-assembled BiFeO3-CoFe2O4 nanocomposite thin films
Resumo:
Self-assembled (0.65)BiFeO3-(0.35)CoFe2O4 (BFO-CFO) nanostructures were deposited on SrTiO3 (001) and (111) substrates by pulsed laser deposition at various temperatures from 500 to 800°C. The crystal phases and the lattice strain for the two different substrate orientations have been determined and compared. The films grow epitaxial on both substrates but separation of the spinel and perovskite crystallites, without parasitic phases, is only obtained for growth temperatures of around 600-650°C. The BFO crystallites are out-of-plane expanded on STO(001), whereas they are almost relaxed on (111). In contrast, CFO crystallites grow out-of-plane compressed on both substrates. The asymmetric behavior of the cell parameters of CFO and BFO is discussed on the basis of the role of the epitaxial stress caused by the substrate and the spinel-perovskite interfacial stress. It is concluded that interfacial stress dominates the elastic properties of CFO crystallites and thus it may play a fundamental on the interface magnetoelectric coupling in these nanocomposites.
Resumo:
BACKGROUND: As the incidence of malaria diminishes, a better understanding of nonmalarial fever is important for effective management of illness in children. In this study, we explored the spectrum of causes of fever in African children. METHODS: We recruited children younger than 10 years of age with a temperature of 38°C or higher at two outpatient clinics--one rural and one urban--in Tanzania. Medical histories were obtained and clinical examinations conducted by means of systematic procedures. Blood and nasopharyngeal specimens were collected to perform rapid diagnostic tests, serologic tests, culture, and molecular tests for potential pathogens causing acute fever. Final diagnoses were determined with the use of algorithms and a set of prespecified criteria. RESULTS: Analyses of data derived from clinical presentation and from 25,743 laboratory investigations yielded 1232 diagnoses. Of 1005 children (22.6% of whom had multiple diagnoses), 62.2% had an acute respiratory infection; 5.0% of these infections were radiologically confirmed pneumonia. A systemic bacterial, viral, or parasitic infection other than malaria or typhoid fever was found in 13.3% of children, nasopharyngeal viral infection (without respiratory symptoms or signs) in 11.9%, malaria in 10.5%, gastroenteritis in 10.3%, urinary tract infection in 5.9%, typhoid fever in 3.7%, skin or mucosal infection in 1.5%, and meningitis in 0.2%. The cause of fever was undetermined in 3.2% of the children. A total of 70.5% of the children had viral disease, 22.0% had bacterial disease, and 10.9% had parasitic disease. CONCLUSIONS: These results provide a description of the numerous causes of fever in African children in two representative settings. Evidence of a viral process was found more commonly than evidence of a bacterial or parasitic process. (Funded by the Swiss National Science Foundation and others.).
Resumo:
In recent years it has become evident that screening for and treatment of acute toxoplasmosis during pregnancy may have no measurable impact on vertical transmission and neonatal morbidity and mortality. A broad lack of evidence with regard to many aspects of congenital toxoplasmosis has been recognised in a common European initiative (EUROTOXO) which reviewed several thousand published papers on the subject of toxoplasmosis during pregnancy and childhood. It was therefore clear that the strategies currently implemented in our country would, on closer inspection, no longer withstand the claim for evidence-based procedures. The arguments and call for a change of paradigm in Switzerland which follow here are the result of a national consensus-finding process involving experts from various specialities, including gynaecology/obstetrics, paediatrics/neonatology, infectiology, ophthalmology and laboratory medicine, together with representatives of the public health authorities.