965 resultados para parametric design
Resumo:
This paper presents an innovative and practical approach to controlling heave motion in the presence of acute stochastic atmospheric disturbances during landing operations of an Unmanned Autonomous Helicopter (UAH). A heave motion model of an UAH is constructed for the purpose of capturing dynamic variations of thrust due to horizontal wind gusts. Additionally, through construction of an effective observer to estimate magnitudes of random gusts, a promising and feasible feedback-feedforward PD controller is developed, based on available measurements from onboard equipment. The controller dynamically and synchronously compensates for aerodynamic variations of heave motion resulting from gust influence, to increase the disturbance-attenuation ability of the UAH in a windy environment. Simulation results justify the reliability and efficiency of the suggested gust observer to estimate gust levels when applied to the heave motion model of a small unmanned helicopter, and verify suitability of the recommended control strategy to realistic environmental conditions.
Resumo:
Plasmin is the primary enzyme responsible for dissolution of fibrin in the circulatory system. Plasminogen, the zymogen of plasmin is expressed ubiquitously in the human body [1], with the predominant source being the liver [2, 3]. Plasminogen is produced as an 810 amino acid protein with a 19 amino acid leader peptide, which is cleaved during secretion to produce the mature 791 amino acid one-chain zymogen. This is converted to plasmin by cleavage of the Arg561 - Val562 scissile bond [4], resulting in an active protease consisting of two disulfide linked chains. The amino-terminal heavy chain (residues Glu1-Arg561) is comprised of a plasminogen/apple/nematode (PAN) domain [5] and five kringle domains of approximately equal size [6] while the light chain (residues Val562-Asn791) contains a serine protease domain homologous to trypsin with a catalytic triad comprising His603, Asp646 and Ser741 [7]. Both plasmin and plasminogen occur in two forms, full length and a Lys77-Lys78 activated variant produced through self catalysis (Figure 1). The former exists in a tight conformation through binding of Lys50 and/or Lys62 to kringle domain 5 [8, 9] while Lys78-plasminogen assumes a more relaxed conformation rendering it more susceptible to plasmin conversion [10, 11].
Resumo:
This paper presents the findings from the initial exploration phase of an 11 month project, identifying the early challenges that a design innovation catalyst faces while initiating a shift in the way a medium sized manufacturing firm utilises design. Ultimately, the overarching aims of the project are to transform the utilisation of design within the participating company from a styling tool to a strategic process through the implementation of a design led approach to innovation. Insights were found through qualitative interviews with company staff and reflective journal entries as part of an Action Research methodology. Challenges identified include managing expectations, conveying the potential of a design innovation catalyst and a design led approach to innovation, and a siloed and risk averse culture. Findings presented in this paper will assist in identifying and understanding the preliminary challenges encountered by a design innovation catalyst when embarking on a design led transformation. Future innovation catalysts can prepare for possible barriers by highlighting considerations, opportunities and challenges when embarking on a design led transformation. Implications of this research are provided as possible approaches to overcoming these challenges.
Resumo:
There is an evident need to develop the strategic capabilities of companies from within, to ensure competitive competence in a time where strategy is a necessity. This paper is based on the first 4 months of a longitudinal embedded case study of a family-owned Australian small to medium enterprise, in their journey towards design integration. The first author was embedded as a ‘Design Innovation Catalyst’ to collaborate on overcoming early barriers of strategic development, using design led innovation. Action research methodology, semi-structured interviews with seven out of eight employees and a reflective journal revealed the absence of a shared vision, conflicting drivers and a focus on operational efficiency rather than strategy. Through the Catalyst’s facilitation, a company vision, general awareness, practice and knowledge in strategic development have emerged as the first steps to generating strategic design competence within the firm.
Resumo:
Major changes to regulations, funding and consumer demand in the Australian aged care industry are driving not for profits in this sector to reshape and rethink the services they offer and the ways in which they deliver their services to consumers. Many not for profit organisations facing these new challenges are also facing organisational cultural barriers in the development and implementation of innovative strategies. This paper presents a case study where one organisation, using design led innovation, explored consumer insights and employee values to find new ways to facilitate change.