980 resultados para optimal route finding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a form of MPC in which the control variables are moved asynchronously. This contrasts with most MIMO control schemes, which assume that all variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The Multiplexed MPC (MMPC) scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, which may result in improved performance, despite finding sub-optimal solutions to the original problem. This paper describes nominal and robust MMPC, states some stability results, and demonstrates the effectiveness of MMPC through two examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated daily treatment with the catecholamine-depleting agent, reserpine, dramatically reduced performance on the delayed response task, a test of spatial working memory that depends upon the integrity of the prefrontal cortex. Delayed response performance fell from an average of 27.2/30 trials correct before reserpine treatment to an average of 20.4/30 trials correct after repeated reserpine administration. Injection of the alpha2-adrenergic agonist, clonidine (0.0001-0.05 mg/kg), to chronic reserpine-treated monkeys significantly restored performance on the delayed response task; performance after an optimal dose averaged 27.8/30 trials correct. Clonidine's beneficial effects on delayed response performance were longlasting; monkeys remained improved for more than 24 h after a single clonidine injection. The finding that clonidine is efficacious in reserpinized animals supports the hypothesis that alpha2-adrenergic agonists improve cognitive function through actions at postsynaptic, alpha2-adrenergic receptors on non-adrenergic cells. In contrast to the delayed response task, reserpine had little effect on performance of a visual discrimination task, a reference memory task which does not depend on the prefrontal cortex. These results emphasize the importance of postsynaptic alpha2-adrenergic mechanisms in the regulation of working memory,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

POMDP algorithms have made significant progress in recent years by allowing practitioners to find good solutions to increasingly large problems. Most approaches (including point-based and policy iteration techniques) operate by refining a lower bound of the optimal value function. Several approaches (e.g., HSVI2, SARSOP, grid-based approaches and online forward search) also refine an upper bound. However, approximating the optimal value function by an upper bound is computationally expensive and therefore tightness is often sacrificed to improve efficiency (e.g., sawtooth approximation). In this paper, we describe a new approach to efficiently compute tighter bounds by i) conducting a prioritized breadth first search over the reachable beliefs, ii) propagating upper bound improvements with an augmented POMDP and iii) using exact linear programming (instead of the sawtooth approximation) for upper bound interpolation. As a result, we can represent the bounds more compactly and significantly reduce the gap between upper and lower bounds on several benchmark problems. Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 'optimal' or 'best' design process may be the shortest or cheapest process, or the one that leads to a particularly desirable product, or to a reliable and maintainable product, or to a manufacturable product, or some combination of all of these. It is likely to satisfy the aspirations of the organisation to invest an appropriate amount of resource in the development of a specific new market opportunity, set in the context of longer-term business goals. This paper describes the progress made in over ten years of research on process modelling undertaken at the Cambridge Engineering Design Centre to identify an 'optimal' design process with which to develop an 'adequate' product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends the authors' earlier work which adapted robust multiplexed MPC for application to distributed control of multi-agent systems with non-interacting dynamics and coupled constraint sets in the presence of persistent unknown, but bounded disturbances. Specifically, we propose exploiting the single agent update nature of the multiplexed approach, and fix the update sequence to enable input move-blocking and increased discretisation rates. This permits a higher rate of individual policy update to be achieved, whilst incurring no additional computational cost in the corresponding optimal control problems to be solved. A disturbance feedback policy is included between updates to facilitate finding feasible solutions. The new formulation inherits the property of rapid response to disturbances from multiplexing the control and numerical results show that fixing the update sequence does not incur any loss in performance. © 2011 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Multiplexed MPC, the control variables of a MIMO plant are moved asynchronously, following a pre-planned periodic sequence. The advantage of Multiplexed MPC lies in its reduced computational complexity, leading to faster response to disturbances, which may result in improved performance, despite finding sub-optimal solution to the original problem. This paper extends the original Multiplexed MPC in a way such that the control inputs are no longer restricted to a pre-planned periodic sequence. Instead, the most appropriate control input channel would be optimised and selected to counter the disturbances, hence the name 'Channel-Hopping'. In addition, the proposed algorithm is suitable for execution on modern computing platforms such as FPGA or GPU, exploits multi-core, parallel and pipeline computing techniques. The algorithm for the proposed Channel-hopping MPC (CH-MPC) will be described and its stability established. Illustrative examples are given to demonstrate the behaviour of the proposed Channel-Hopping MPC algorithm. © 2011 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deciding whether a set of objects are the same or different is a cornerstone of perception and cognition. Surprisingly, no principled quantitative model of sameness judgment exists. We tested whether human sameness judgment under sensory noise can be modeled as a form of probabilistically optimal inference. An optimal observer would compare the reliability-weighted variance of the sensory measurements with a set size-dependent criterion. We conducted two experiments, in which we varied set size and individual stimulus reliabilities. We found that the optimal-observer model accurately describes human behavior, outperforms plausible alternatives in a rigorous model comparison, and accounts for three key findings in the animal cognition literature. Our results provide a normative footing for the study of sameness judgment and indicate that the notion of perception as near-optimal inference extends to abstract relations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a technique for improving the region of attraction of a robust variable horizon model predictive controller. It considers a constrained discrete-time linear system acted upon by a bounded, but unknown time-varying state disturbance. Using constraint tightening for robustness, it is shown how the tightening policy, parameterised as direct feedback on the disturbance, can be optimised to increase the volume of an inner approximation to the controller's true region of attraction. Numerical examples demonstrate the benefits of the policy in increasing region of attraction volume and decreasing the maximum prediction horizon length. © 2012 IEEE.