975 resultados para optimal fishing effort


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Government procurement of a new good or service is a process that usually includes basic research, development, and production. Empirical evidences indicate that investments in research and development (R and D) before production are significant in many defense procurements. Thus, optimal procurement policy should not be only to select the most efficient producer, but also to induce the contractors to design the best product and to develop the best technology. It is difficult to apply the current economic theory of optimal procurement and contracting, which has emphasized production, but ignored R and D, to many cases of procurement.

In this thesis, I provide basic models of both R and D and production in the procurement process where a number of firms invest in private R and D and compete for a government contract. R and D is modeled as a stochastic cost-reduction process. The government is considered both as a profit-maximizer and a procurement cost minimizer. In comparison to the literature, the following results derived from my models are significant. First, R and D matters in procurement contracting. When offering the optimal contract the government will be better off if it correctly takes into account costly private R and D investment. Second, competition matters. The optimal contract and the total equilibrium R and D expenditures vary with the number of firms. The government usually does not prefer infinite competition among firms. Instead, it prefers free entry of firms. Third, under a R and D technology with the constant marginal returns-to-scale, it is socially optimal to have only one firm to conduct all of the R and D and production. Fourth, in an independent private values environment with risk-neutral firms, an informed government should select one of four standard auction procedures with an appropriate announced reserve price, acting as if it does not have any private information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the thesis we explore three fundamental questions that arise naturally when we conceive a machine learning scenario where the training and test distributions can differ. Contrary to conventional wisdom, we show that in fact mismatched training and test distribution can yield better out-of-sample performance. This optimal performance can be obtained by training with the dual distribution. This optimal training distribution depends on the test distribution set by the problem, but not on the target function that we want to learn. We show how to obtain this distribution in both discrete and continuous input spaces, as well as how to approximate it in a practical scenario. Benefits of using this distribution are exemplified in both synthetic and real data sets.

In order to apply the dual distribution in the supervised learning scenario where the training data set is fixed, it is necessary to use weights to make the sample appear as if it came from the dual distribution. We explore the negative effect that weighting a sample can have. The theoretical decomposition of the use of weights regarding its effect on the out-of-sample error is easy to understand but not actionable in practice, as the quantities involved cannot be computed. Hence, we propose the Targeted Weighting algorithm that determines if, for a given set of weights, the out-of-sample performance will improve or not in a practical setting. This is necessary as the setting assumes there are no labeled points distributed according to the test distribution, only unlabeled samples.

Finally, we propose a new class of matching algorithms that can be used to match the training set to a desired distribution, such as the dual distribution (or the test distribution). These algorithms can be applied to very large datasets, and we show how they lead to improved performance in a large real dataset such as the Netflix dataset. Their computational complexity is the main reason for their advantage over previous algorithms proposed in the covariate shift literature.

In the second part of the thesis we apply Machine Learning to the problem of behavior recognition. We develop a specific behavior classifier to study fly aggression, and we develop a system that allows analyzing behavior in videos of animals, with minimal supervision. The system, which we call CUBA (Caltech Unsupervised Behavior Analysis), allows detecting movemes, actions, and stories from time series describing the position of animals in videos. The method summarizes the data, as well as it provides biologists with a mathematical tool to test new hypotheses. Other benefits of CUBA include finding classifiers for specific behaviors without the need for annotation, as well as providing means to discriminate groups of animals, for example, according to their genetic line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser interferometer gravitational wave observatory (LIGO) consists of two complex large-scale laser interferometers designed for direct detection of gravitational waves from distant astrophysical sources in the frequency range 10Hz - 5kHz. Direct detection of space-time ripples will support Einstein's general theory of relativity and provide invaluable information and new insight into physics of the Universe.

Initial phase of LIGO started in 2002, and since then data was collected during six science runs. Instrument sensitivity was improving from run to run due to the effort of commissioning team. Initial LIGO has reached designed sensitivity during the last science run, which ended in October 2010.

In parallel with commissioning and data analysis with the initial detector, LIGO group worked on research and development of the next generation detectors. Major instrument upgrade from initial to advanced LIGO started in 2010 and lasted till 2014.

This thesis describes results of commissioning work done at LIGO Livingston site from 2013 until 2015 in parallel with and after the installation of the instrument. This thesis also discusses new techniques and tools developed at the 40m prototype including adaptive filtering, estimation of quantization noise in digital filters and design of isolation kits for ground seismometers.

The first part of this thesis is devoted to the description of methods for bringing interferometer to the linear regime when collection of data becomes possible. States of longitudinal and angular controls of interferometer degrees of freedom during lock acquisition process and in low noise configuration are discussed in details.

Once interferometer is locked and transitioned to low noise regime, instrument produces astrophysics data that should be calibrated to units of meters or strain. The second part of this thesis describes online calibration technique set up in both observatories to monitor the quality of the collected data in real time. Sensitivity analysis was done to understand and eliminate noise sources of the instrument.

Coupling of noise sources to gravitational wave channel can be reduced if robust feedforward and optimal feedback control loops are implemented. The last part of this thesis describes static and adaptive feedforward noise cancellation techniques applied to Advanced LIGO interferometers and tested at the 40m prototype. Applications of optimal time domain feedback control techniques and estimators to aLIGO control loops are also discussed.

Commissioning work is still ongoing at the sites. First science run of advanced LIGO is planned for September 2015 and will last for 3-4 months. This run will be followed by a set of small instrument upgrades that will be installed on a time scale of few months. Second science run will start in spring 2016 and last for about 6 months. Since current sensitivity of advanced LIGO is already more than factor of 3 higher compared to initial detectors and keeps improving on a monthly basis, upcoming science runs have a good chance for the first direct detection of gravitational waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated four unique methods for achieving scalable, deterministic integration of quantum emitters into ultra-high Q{V photonic crystal cavities, including selective area heteroepitaxy, engineered photoemission from silicon nanostructures, wafer bonding and dimensional reduction of III-V quantum wells, and cavity-enhanced optical trapping. In these areas, we were able to demonstrate site-selective heteroepitaxy, size-tunable photoluminescence from silicon nanostructures, Purcell modification of QW emission spectra, and limits of cavity-enhanced optical trapping designs which exceed any reports in the literature and suggest the feasibility of capturing- and detecting nanostructures with dimensions below 10 nm. In addition to process scalability and the requirement for achieving accurate spectral- and spatial overlap between the emitter and cavity, these techniques paid specific attention to the ability to separate the cavity and emitter material systems in order to allow optimal selection of these independently, and eventually enable monolithic integration with other photonic and electronic circuitry.

We also developed an analytic photonic crystal design process yielding optimized cavity tapers with minimal computational effort, and reported on a general cavity modification which exhibits improved fabrication tolerance by relying exclusively on positional- rather than dimensional tapering. We compared several experimental coupling techniques for device characterization. Significant efforts were devoted to optimizing cavity fabrication, including the use of atomic layer deposition to improve surface quality, exploration into factors affecting the design fracturing, and automated analysis of SEM images. Using optimized fabrication procedures, we experimentally demonstrated 1D photonic crystal nanobeam cavities exhibiting the highest Q/V reported on substrate. Finally, we analyzed the bistable behavior of the devices to quantify the nonlinear optical response of our cavities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H. J. Kushner has obtained the differential equation satisfied by the optimal feedback control law for a stochastic control system in which the plant dynamics and observations are perturbed by independent additive Gaussian white noise processes. However, the differentiation includes the first and second functional derivatives and, except for a restricted set of systems, is too complex to solve with present techniques.

This investigation studies the optimal control law for the open loop system and incorporates it in a sub-optimal feedback control law. This suboptimal control law's performance is at least as good as that of the optimal control function and satisfies a differential equation involving only the first functional derivative. The solution of this equation is equivalent to solving two two-point boundary valued integro-partial differential equations. An approximate solution has advantages over the conventional approximate solution of Kushner's equation.

As a result of this study, well known results of deterministic optimal control are deduced from the analysis of optimal open loop control.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three wavelengths of red, green and blue of recording beams are systemically tested for the UV-assistant recording and optical fixing of holograms in a strongly oxidized Ce:Cu:LiNbO3 crystal. Three different photorefractive phenomena are observed. It is shown that the green beams will optimally generate a critical strong nonvolatile hologram with quick sensitivity and the optimal switching technique could be jointly used to obtain a nearly 100% high diffraction. Theoretical verification is given, and a prescription on the doping densities and on the oxidation/reduction states of the material to match a defined recording wavelength for high diffraction is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vectorial Kukhtarev equations modified for the nonvolatile holographic recording in doubly doped crystals are analyzed, in which the bulk photovoltaic effect and the external electrical field are both considered. On the basis of small modulation approximation, both the analytic solution to the space-charge field with time in the recording phase and in the readout phase are deduced. The analytic solutions can be easily simplified to adapt the one-center model, and they have the same analytic expressions given those when the grating vector is along the optical axis. Based on the vectorial analyses of the band transport model an optimal recording direction is given to maximize the refractive index change in doubly doped LiNbO3:Fe: Mn crystals. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the performance of semi-supervised learning has been theoretically investigated. However, most of this theoretical development has focussed on binary classification problems. In this paper, we take it a step further by extending the work of Castelli and Cover [1] [2] to the multi-class paradigm. Particularly, we consider the key problem in semi-supervised learning of classifying an unseen instance x into one of K different classes, using a training dataset sampled from a mixture density distribution and composed of l labelled records and u unlabelled examples. Even under the assumption of identifiability of the mixture and having infinite unlabelled examples, labelled records are needed to determine the K decision regions. Therefore, in this paper, we first investigate the minimum number of labelled examples needed to accomplish that task. Then, we propose an optimal multi-class learning algorithm which is a generalisation of the optimal procedure proposed in the literature for binary problems. Finally, we make use of this generalisation to study the probability of error when the binary class constraint is relaxed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison of some different European methods of estimating the numbers of fish in a lake using different fishing gear is described. The different gears used were 1. surface trawl used by night 2. bottom trawl used by day 3. trammel nets, set in the evening and lifted in the morning 4. surface seine net used by night 5. bottom seine net used by day 6. Fyke nets, emptied each morning and evening 7. gill nets, set in the evening and lifted in the morning. The most variable catches were from those gears used by day on the bottom and the least variable were those used by night at the surface. The work continued by examining the use of acoustic systems for pelagic fish stock assessment. This gear gave reasonable population estimates for pelagic fish 10m and more below the surface. The advantage of the accoustic method is that it is quick and requires little labour. Its disadvantage is that it is not possible to identify the species and so it must be supplemented by another, conventional method.