990 resultados para optical limiting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper is described a novel technique for producing an electro-optical intensity synthesizer which can generate different periodic time domain waveforms through only sine or cosine wave applied-voltages. The synthesizer presented here consists of a series of stages between two polarizers, with each stage consisting of an electro-optic element and a compensator. Every electro-optical element has the same applied-voltage function but different azimuth angles and ratios between the longitudinal and transverse lengths. The main principle is the synthesis of an electro-optic effect and a polarization interference effect in the time domain. This technique is based on an expanded Fourier positive-direction searching algorithm, which can not only simplify the calculation process but also produces many choices of structural parameters for different waveforms generation. A three-stage synthesis of an electro-optical birefringent system for continuous square waveform is undertaken to prove the principle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved organic matter, especially turf and peat, is repsonsible for the colouration of water. The reported study tried to determine the nature of the colouring agent or organic matter by the establishment of a relationship between the intensity of colouration and the total organic matter content. 44 waters from different sources were examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]For a good development of elastic optical networks, the design of flexible optical switching nodes is required. This work analyses the previously proposed flexible architectures and, based on the most appropriate, which is the Architecture on Demand (AoD), proposes a specific configuration of the node that includes spatial and spectral switching and the wavelength conversion functionality with a low blocking probability and the minimum amount of modules; the characteristics of the traffic that the designed node is able to cope with are specified in the last chapter. An evaluation of the designed node is also done, and, compared to the other architectures, it is shown that the Architecture on Demand gives better results than others and that it has a higher potential for future developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dammann gratings are well known for their ability to generate arrays of Lmiform-intensity beams from an incoming monochromatic beam. We apply the even-numbered Dammann grating to achieve dynamic optical coupled technology. A 1 x N dynamic optical coupled system is developed by employing two complementary even-numbered Dammann gratings. With this system we can achieve a beam splitter and combiner as a switch between them according to the relative shift between the gratings. Also, this system is a preferable approach in integral packaging. More importantly, this device has the potential to be applied to the splitting of a large array, e.g., 8 x 16 array and 64 x 64 array, which is difficult to be realized with conventional splitting methods. We experimentally demonstrated a 1 x 8 coupler at the wavelength of 1550 nm. Furthermore we analyze the effects of the alignment errors between gratings and the wavelength-dependent error on efficiency and uniformity. The experimental results and the influence of alignment error and wavelength-dependent error are analyzed in detail. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found that the optical power of a laser diode (LD) does not change with the injected light intensity that is modulated when its injection current is at some specific values. The amplitude of optical power change of the LD varies periodically with the increase of the injection current. It is made clear through theoretical analysis that these phenomena are caused by gain compression and interband carrier absorption of the LD that depend on longitudinal mode competition, bandgap-shrinkage effects, thermal conduction, and so on. Our experimental results make it easy to eliminate optical power change of LDs. We only need to choose a proper value of the injection current. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a simple technique to determine the coupling efficiency between a laser diode and a lensed-tip based on the ABCD transformation matrix method. We have compared our analysis technique to that of previous work and have found that the presented method is reliable in predicting the coupling efficiency of lensed-tip and has the advantage of simplicity of coupling efficiency calculation even by a pocket calculator. The results can be useful for designing coupling optics. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two novel 1XN dynamic optical couplers that are based on Dammann gratings to achieve dynamic optical coupled technology. One is presented by employing a specially designed Dammann grating that consists of the Dammann-grating area and the blank area. The other is developed by using two complementary even-numbered Dammann gratings. The couplers can achieve the function conversion between a beam splitter and a combiner according to the modulation of the gratings. We have experimentally demonstrated 1X8 dynamic optical couplers at the wavelength of 1550 nm. The experimental results and the analyses are reported in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency resolved optical gating (FROG), is an effective technique for characterizing the ultrafast laser pulses. The multi-shot second harmonic generation (SHG) FROG is the most sensitive one in different FROGs. In this paper we use this technique to measure the femtosecond optical pulses generated by a conventional Ti:sapphire oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a full-range parallel Fourier-domain optical coherence tomography (FD-OCT) in which a tomogram free of mirror images as well as DC and autocorrelation terms is obtained in parallel. The phase and amplitude of two-dimensional spectral interferograms are accurately detected by using sinusoidal phase-modulating interferometry and a two-dimensional CCD camera, which allows for the reconstruction of two-dimensional complex spectral interferograms. By line-by-line inverse Fourier transformation of the two-dimensional complex spectral interferogram, a full-range parallel FD-OCT is realized. Tomographic images of two separated glass coverslips obtained with our method are presented as a proof-of-principle experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce3+ and B2O3 are introduced into erbium-doped Bi2O3-SiO2 glass to enhance the luminescence emission and optic spectra characters of Er3+. The energy transfer from Er3+ to Ce3+ will obviously be improved with the phonon energy increasing by the addition of B2O3. Here, the nonradiative rate, the lifetime of the I-4(11/2) -> I-4(3/2) transition, and the emission intensity and bandwidth of the 1.5 mu m luminescence with the I-4(13/2) -> I-4(5/2) transition of Er3+ are discussed in detail. The results show that the optical parameters of Er3+ in this bismuth-borate-silicate glass are nearly as good as that in tellurite glass, and the physical properties are similar to those in silicate glass. With the Judd-Ofelt and nonradiative theory analyses, the multiphonon decay and phonon-assisted energy-transfer (PAT) rates are calculated for the Er3+/Ce3+ codoped glasses. For the PAT process, an optimum value of the glass phonon energy is obtained after B2O3 is introduced into the Er3+/Ce3+ codoped bismuth-silicate glasses, and it much improves the energy-transfer rate between Er3+ I-4(11/2)-I-4(13/2) and Ce3+ F-2(5/2) -> F-2(7/2), although there is an energy mismatch. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a technique for dynamic full-range Fourier-domain optical coherence tomography by using sinusoidal phase-modulating interferometry, where both the full-range structural information and depth-resolved dynamic information are obtained. A novel frequency-domain filtering algorithm is proposed to reconstruct a time-dependent complex spectral interferogram from the sinusoidally phase-modulated interferogram detected with a high-rate CCD camera. By taking the amplitude and phase of the inverse Fourier transform of the complex spectral interferogram, a time-dependent full-range cross-sectional image and depth-resolved displacement are obtained. Displacement of a sinusoidally vibrating glass cover slip behind a fixed glass cover slip is measured with subwavelength sensitivity to demonstrate the depth-resolved dynamic imaging capability of our system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the optical characteristics of PLZT electro-optic ceramic, two kinds of electro-optic deflectors, triangular electrode structure and optical phased array technology, are studied in detail by using transverse electro-optic effect. Theoretically, the electro-optic deflection characteristics and mechanisms of the deflectors are analyzed. Experimentally, the optical characteristics of ceramic wafer, such as the phase modulation, the hysteresis and the electro-induced loss characteristics, are measured firstly, and then the beam deflection experiments are designed to verify the theoretical results. Moreover, the effect of temperature on the performance of triangular electrode deflector is investigated. The characteristics of both deflectors are also compared and illuminated. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel communication technique which utilizes a set of mutually distinguishable optical patterns instead of convergent facula to transmit information. The communication capacity is increased by exploiting the optical spatial bandwidth resources. An optimum detector for this communication is proposed based on maximum-likelihood decision. The fundamental rule of designing signal spatial pattern is formulated from analysis of the probability of error decision. Finally, we present a typical electro-optical system scheme of the proposed communication. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.

This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.