974 resultados para nutrient stochastic frontier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of review To summarize recent findings relating to the impact of dietary fat composition on whole body lipid metabolism, and common gene variants on the blood lipid response to dietary fat change. Recent findings In recent years a more comprehensive understanding of the impact of polyunsaturated fat (PUFA) intake on the regulation of transcription factors involved in lipogenesis and fatty acid and lipoprotein metabolism has emerged. The evidence is suggestive of a greater potency of the long chain n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and in particular their oxidative products, relative to n-6 Pi In the area of nutrigenetics a number of common gene variants have been identified which may be important determinants of the blood lipid response to altered dietary fat composition. However, confirmation of associations in independent cohorts, and an understanding of the size effect of individual or combinations of genotypes, is often lacking. Summary Although in the future, genotyping holds the potential as a public health tool to target and personalize dietary advice, nutrigenetics is a relatively new science, and further research is needed to address the existing inconsistencies and knowledge gaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. Objective: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. Design: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). Results: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. Conclusions: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is presented for locating and tracking objects in cluttered environments. Agents are randomly distributed across the image, and subsequently grouped around targets. Each agent uses a weightless neural network and a histogram intersection technique to score its location. The system has been used to locate and track a head in 320x240 resolution video at up to 15fps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an improved stochastic discrimination (SD) is introduced to reduce the error rate of the standard SD in the context of multi-class classification problem. The learning procedure of the improved SD consists of two stages. In the first stage, a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. In the second stage, the standard SD is modified by (i) restricting sampling in the important space; and (ii) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but smaller variance than that of standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples axe provided to demonstrate the effectiveness of the proposed improved SD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates random number generators in stochastic iteration algorithms that require infinite uniform sequences. We take a simple model of the general transport equation and solve it with the application of a linear congruential generator, the Mersenne twister, the mother-of-all generators, and a true random number generator based on quantum effects. With this simple model we show that for reasonably contractive operators the theoretically not infinite-uniform sequences perform also well. Finally, we demonstrate the power of stochastic iteration for the solution of the light transport problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a stochastic approach for solving the quantum-kinetic equation introduced in Part I. A Monte Carlo method based on backward time evolution of the numerical trajectories is developed. The computational complexity and the stochastic error are investigated numerically. Variance reduction techniques are applied, which demonstrate a clear advantage with respect to the approaches based on symmetry transformation. Parallel implementation is realized on a GRID infrastructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of Stochastic Diffusion Search (SDS), a novel and efficient optimisation and search algorithm, is presented, resulting in a derivation of the minimum acceptable match resulting in a stable convergence within a noisy search space. The applicability of SDS can therefore be assessed for a given problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An information processing paradigm in the brain is proposed, instantiated in an artificial neural network using biologically motivated temporal encoding. The network will locate within the external world stimulus, the target memory, defined by a specific pattern of micro-features. The proposed network is robust and efficient. Akin in operation to the swarm intelligence paradigm, stochastic diffusion search, it will find the best-fit to the memory with linear time complexity. information multiplexing enables neurons to process knowledge as 'tokens' rather than 'types'. The network illustrates possible emergence of cognitive processing from low level interactions such as memory retrieval based on partial matching. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic discrimination (SD) depends on a discriminant function for classification. In this paper, an improved SD is introduced to reduce the error rate of the standard SD in the context of a two-class classification problem. The learning procedure of the improved SD consists of two stages. Initially a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. Then the standard SD is modified by 1) restricting sampling in the important space, and 2) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but with a smaller variance than that of the standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples are provided to demonstrate the effectiveness of the proposed improved SD.