963 resultados para nonhuman primate pathology
Resumo:
Development of hypoxic areas occurs during infectious and inflammatory processes and dendritic cells (DCs) are involved in both innate and adaptive immunity in diseased tissues. Our group previously reported that macrophages exposed to hypoxia were infected with the intracellular parasite Leishmania amazonensis, but showed reduced susceptibility to the parasite. This study shows that although hypoxia did not alter human DC viability, it significantly altered phenotypic and functional characteristics. The expression of CD1a, CD80, and CD86 was significantly reduced in DCs exposed to hypoxia, whereas CD11c, CD14, CD123, CD49 and HLA-DR expression remained unaltered in DCs cultured in hypoxia or normoxia. DC secretion of IL-12p70, the bioactive interleukin-12 (IL-12), a cytokine produced in response to inflammatory mediators, was enhanced under hypoxia. In addition, phagocytic activity (Leishmania uptake) was not impaired under hypoxia, although this microenviroment induced infected DCs to reduce parasite survival, consequently controlling the infection rate. All these data support the notion that a hypoxic microenvironment promotes selective pressure on DCs to assume a phenotype characterized by pro-inflammatory and microbial activities in injured or inflamed tissues and contribute to the innate immune response.
Resumo:
Autoimmune hepatitis is an inflammatory chronic disease of the liver, which frequently results in cirrhosis. The present study aimed to verify the relationship between plasma cells and stellate cells in autoimmune hepatitis. Thirty-three pre-treatment, 11 post-treatment, and 10 normal liver biopsies were reviewed. Sirius Red staining (for semi-quantitative analysis of hepatic fibrosis) and immunohistochemistry were carried out: double staining for smooth muscle alpha-actin and plasma cell marker (for detection and localization of activated hepatic stellate cells and plasma cells, respectively); and single staining for glial fibrillary acid protein (for detection of hepatic stellate cells). We found an increase in the stellate cell population, mainly with an activated phenotype in autoimmune hepatitis, compared to the control group (liver specimens with no histological evidence of liver disease, obtained from patients undergoing hepatic resection for benign liver mass). A positive significant correlation was observed between stellate cells and scores of fibrosis (measured by Sirius Red) and the number of plasma cells. Additionally, there was a co-localization of plasma cells and activated stellate cells. We also observed a reduction in the number of plasma cells, hepatic stellate cells, and fibrosis in patients who had successfully been treated and had a second liver biopsy post-treatment. Our findings support that the number of plasma cells can be a surrogate marker for the severity of liver disease, reflecting the number of hepatic stellate cells and the amount of fibrosis. It remains to be seen if this is a result of a direct interaction between the plasma cells and hepatic stellate cells or the response to the same stimulus that affects both cellular types. (c) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Cardoso CR, Provinciatto PR, Godoi DF, Ferreira BR, Teixeira G, Rossi MA, Cunha FQ, Silva JS. IL-4 regulates susceptibility to intestinal inflammation in murine food allergy. Am J Physiol Gastrointest Liver Physiol 296: G593-G600, 2009. First published January 8, 2009; doi:10.1152/ajpgi.90431.2008.-Allergies involve a state of immediate hypersensitivity to antigens, including food proteins. The mechanism underlying the initiation and development of allergic responses involves IL-4 that directly induces the differentiation of committed effector Th2 lymphocytes. Although it is clear that Th2 responses play a pivotal role in the development of allergic responses, it remains unclear which mechanisms are involved in the development of the intestinal damages observed in food allergy. Accordingly, this work aimed to study the role of Th2/IL-4-dependent responses in the development of food allergy and intestinal pathology. C57BL/6 wild-type (WT) and IL-4(-/-) mice were sensitized with peanut proteins, challenged with peanut seeds, and followed for the development of food allergy and intestinal inflammation. Results demonstrated that exposure to peanut seeds led to weight loss in WT but not in IL-4(-/-) mice that preserved gut integrity with no signs of mucosal inflammation. These animals presented increased levels of IgG2a in sera, suggesting a role for allergic antibodies in the pathogenesis of WT animals. Most importantly, results also showed that lack of IL-4 modulated gut mucosal response in food allergy through diminished expression of TNF-alpha mRNA, increased Th1 IFN-gamma, IL-12p40, regulatory cytokines, and Foxp3, demonstrating their relevance in the control of allergic inflammatory processes, especially in the intestine. Finally, this study highlighted some of the complex mechanisms involved in the pathogenesis of allergic responses to food antigens in the gut, thereby providing valuable tools for directing novel therapeutic or preventive strategies to the control of allergic enteropathy.