972 resultados para newborn, plasmazytoid, dendritic
Resumo:
Objectives. To compare immunohistochemical scoring with clinical scoring and radiology for the assessment of rheumatoid arthritis (RA) disease activity, synovial tissue (ST) biopsied arthroscopically was assessed from 18 patients before and after commencement of disease-modifying anti-rheumatic drug (DMARD) therapy. Methods. Lymphocytes, macrophages, differentiated dendritic cells (DC), vascularity, tumour necrosis factor (TNF)alpha and interleukin-1 beta levels were scored. Clinical status was scored using the American College of Rheumatology (ACR) core set and serial radiographs were scored using the Larsen and Sharp methods. Histopathological evidence of activity included infiltration by lymphocytes, DC, macrophages. tissue vascularity, and expression of lining and sublining TNF alpha. These indices co-varied across the set of ST biopsies and were combined as a synovial activity score for each biopsy. Results. The change in synovial activity with treatment correlated with the ACR clinical response and with decreased radiological progression by the Larsen score, The ACR response to DMARD therapy. the change in synovial activity score and the slowing of radiological progression were each greatest in patients with high initial synovial vascularity. Conclusions. The data demonstrate an association between clinical, radiological and synovial immunopathological responses to anti-rheumatic treatment in RA. High ST vascularity may predict favourable clinical and radiological responses to treatment.
Resumo:
Here we present evidence that the pyramidal cell phenotype varies markedly in the cortex of different anthropoid species. Regional and species differences in the size of, number of bifurcations in, and spine density of the basal dendritic arbors cannot be explained by brain size. Instead, pyramidal cell morphology appears to accord with the specialized cortical function these cells perform. Cells in the prefrontal cortex of humans are more branched and more spinous than those in the temporal and occipital lobes. Moreover, cells in the prefrontal cortex of humans are more branched and more spinous than those in the prefrontal cortex of macaque and marmoset monkeys. These results suggest that highly spinous, compartmentalized, pyramidal cells (and the circuits they form) are required to perform complex cortical functions such as comprehension, perception, and planning.
Resumo:
Pyramidal neurones were injected with Lucifer Yellow in slices cut tangential to the surface of area 7m and the superior temporal polysensory area (STP) of the macaque monkey. Comparison of the basal dendritic arbors of supra- and infragranular pyramidal neurones (n=139) that were injected in the same putative modules in the different cortical areas revealed variation in their structure. Moreover, there were relative differences in dendritic morphology of supra- and infragranular pyramidal neurones in the two cortical areas. Shell analyses revealed that layer III pyramidal neurones in area STP had considerably higher peak complexity (maximum number of dendritic intersections per Shell circle) than those in layer V, whereas peak complexities were similar for supra- and infragranular pyramidal neurones in area 7m. In both cortical areas, the basal dendritic trees of layer m pyramidal neurones were characterized by a higher spine density than those in layer V. Calculations of the total number of dendritic spines in the average basal dendritic arbor revealed that layer V pyramidal neurones in area 7m had twice as many spines as cells in layer III. (4535 and 2294, respectively). A similar calculation for neurones in area STP revealed that layer III pyramidal neurones had approximately the same number of spines as cells in layer V (3585 and 3850 spines, respectively). Relative differences in the branching patterns of, and the number of spines in, the basal dendritic arbors of supra- and infragranular pyramidal neurones in the different cortical areas may allow for integration of different numbers of inputs, and different degrees of dendritic processing. These results support the thesis that intra-areal circuitry differs in different cortical areas.
Resumo:
Objective: To review the common clinical presentations, investigations and final diagnosis of children presenting with genital ambiguity. Methodology: Retrospective search of the Royal Children's Hospital, Brisbane, Australia, medical records and personal medical database of one of the authors (MJT) between 1982 and 1999. Results: Fifty-one children aged 0.1-;14 (mean 3.9) years were identified. Twenty-two cases had a 46XX karyotype, and commonly presented with an enlarged phallus (77.2%), urogenital sinus (63.6%) and labioscrotal fold(s) (40.9%). Congenital adrenal hyperplasia (CAH) was the most common final diagnosis (72.7%) . Twenty-nine cases of genital ambiguity had a 46XY karyotype and commonly presented with palpable gonad(s) (75.8%), undescended testes (51.7%), penoscrotal hypospadias (51.7%) and a small phallus (41.3%). Androgen insensitivity and gonadal dysgenesis were the commonest final diagnosis both occurring at a frequency of 17.2%. Conclusions: The results emphasize the importance of CAH as the most common diagnosis in 46XX cases presenting with ambiguous genitalia. Those with 46XY had a wider range of diagnoses. Despite thorough investigation, 23.5% had no definite final diagnosis made.
Resumo:
Frizzled genes encode a family of Wnt ligand receptors, which have a conserved cysteine-rich Wnt binding domain and include both transmembrane and secreted forms. Work by others has shown that experimental perturbation of Wnt signaling results in aberrant hair formation, hair growth, and hair structure. To date, however, there is no information on the contribution of individual Frizzled proteins to hair development. We now report that Frizzled-3 expression in skin is restricted to the epidermis and to the developing hair follicle. Northern analysis on total mouse skin mRNA revealed a single Frizzled-3 transcript of 3.7 kb. Reverse transcription-polymerase chain reaction and in situ hybridization analysis revealed Frizzled-3 expression in epidermal and hair follicle keratinocytes. Frizzled-3 transcripts are first detected in discrete foci in the developing epidermis of 13 d embryos and later in the hair follicle placodes of 15 d embryos, suggesting a role for this Frizzled isoform in follicle development. In 17 d embryos and id old newborn mice Frizzled-3 expression is limited to suprabasal keratinocytes and is not seen in pelage follicles until 3 d postpartum. In 7 d old neonatal skin, Frizzled-3 is expressed throughout the epidermis and in the outer cell layers of hair follicles. We have also identified the mRNA encoding human Frizzled-3 in epidermal keratinocytes and in the HaCaT keratinocyte cell line. Human Frizzled-3 mRNA encodes a 666 amino acid protein with 97.8% identity to the mouse protein. The human Frizzled-3 gene was mapped using a radiation-hybrid cell line panel to the short arm of chromosome 8 between the markers WI-1172 and WI-8496 near the loci for the Hypotrichosis of Marie Unna and Hairless genes.
Resumo:
After the transition from in utero to newborn life, the neonate becomes solely reliant upon its own drug clearance processes to metabolise xenobiotics. Whilst most studies of neonatal hepatic drug elimination have focussed upon in vitro expression and activities of drug-metabolising enzymes, the rapid physiological changes in the early neonatal period of life also need to be considered. There are dramatic changes in neonatal liver blood how and hepatic oxygenation due to the loss of the umbilical blood supply, the increasing portal vein blood flow, and the gradual closure of the ductus venosus shunt during the first week of life. These changes which may well affect the capacity of neonatal hepatic drug metabolism. The hepatic expression of cytochromes P450 1A2, 2C, 2D6, 2E1 and 3A4 develop at different rates in the postnatal period, whilst 3A7 expression diminishes. Hepatic glucuronidation in the human neonate is relatively immature at birth, which contrasts with the considerably more mature neonatal hepatic sulfation activity. Limited in vivo studies show that the human neonate can significantly metabolise xenobiotics but clearance is considerably less compared with the older infant and adult. The neonatal population included in pharmacological studies is highly heterogeneous with respect to age, body weight, ductus venosus closure and disease processes, making it difficult to interpret data arising from human neonatal studies. Studies in the perfused foetal and neonatal sheep liver have demonstrated how the oxidative and conjugative hepatic elimination of drugs by the intact organ is significantly increased during the first week of life, highlighting that future studies will need to consider the profound physiological changes that may influence neonatal hepatic drug elimination shortly after birth.
Resumo:
Primary olfactory neurons are located in the olfactory neuroepithelium lining the nasal cavity. Their axons converge and form glomeruli with the dendrites of second-order neurons in the olfactory bulb. The molecular basis of primary olfactory axon guidance, targeting and subsequent arborisation is largely unknown. In this study we examined the spatio-temporal expression of the Eph receptor EphB2 and its ligands, ephrin-B1 and ephrin-B2, during development of the rat primary olfactory system. Unlike in other regions of the nervous system where receptor and ligand expression patterns are usually non-overlapping, EphB2, ephrin-B1 and ephrin-B2 were all expressed by primary and second-order olfactory neurons. In the embryonic animal we found that these three proteins had distinct and different expression patterns. EphB2 was first expressed at E18.5 by the perikarya of primary olfactory neurons. In contrast, ephrin-B1 was expressed from E13.5 and was localised to the axons of these cells up to E18.5 but was then restricted to the perikarya. Ephrin-B2, however, was expressed by olfactory ensheathing cells. EphB2, ephrin-B1 and ephrin-B2 were also expressed in the prenatal olfactory bulb and were restricted to the perikarya of mitral cells. In the post-natal olfactory bulb there was a shift in the localisation of both EphB2 and ephrin-B1 to the dendritic arborisations of mitral cells. The dynamic and tightly regulated spatio-temporal expression patterns of EphB2, ephrin-B1 and ephrin-B2 by specific olfactory cell populations suggest that these molecules have the potential to regulate important developmental events in the olfactory system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Selection in the thymus restricted by MHC and self-peptide shapes the diverse reactivities of the T-cell population which subsequently seeds into the peripheral tissues, in anticipation of the universe of pathogen antigens to which the organism may be exposed. A necessary corollary is the potential for T-cell self-reactivity (autoimmunity) in the periphery. Transgenic mouse models in which transgene expression in the thymus is prevented or excluded, have been particularly useful for determining the immunological outcome when T-cells encounter transgene-encoded 'self' antigen in peripheral tissues. Data suggest that non-mutually exclusive mechanisms of T-cells 'ignoring' self-antigen, T-cell deletion, T-cell anergy and T-cell immunoregulation have evolved to prevent self-reactivity while maintaining T-cell diversity. The peripheral T-cell repertoire, far from being static following maturation through the thymus, is in a dynamic stated determined by these peripheral selective and immunoregulatory influences. This article reviews the evidence with particular reference to CD8+ive T-cells.
Resumo:
The E7 oncoprotein of human papillomavirus 16 (HPV16) transforms basal and suprabasal cervical epithelial cells and is a tumor-specific antigen in cervical carcinoma, to which immunotherapeutic strategies aimed at cytotoxic T-lymphocyte (CTL) induction are currently directed. By quantifying major histocompatibility complex class I tetramer-binding T cells and CTL in mice expressing an HPV16 E7 transgene from the keratin-l l (K14) promoter in basal and suprabasal keratinocytes and in thymic cortical epithelium, we show that antigen responsiveness of both E7- and non-E7-specific CD8(+) cells is down-regulation compared to non-E7 transgenic control mice. We show that the effect is specific for E7, and not another transgene, expressed from the K14 promoter, Down-regulation did not involve deletion of CD8(+) T cells of high affinity or high avidity, and T-cell receptor (TCR) VP-chain usage and TCR receptor density were similar in antigen-responsive cells from E7 transgenic and non-E7 transgenic mice. These data indicate that E7 expressed chronically from the K14 promoter nonspecifically down-regulates CD8+ T-cell responses. The in vitro data correlated with the failure of immunized E7 transgenic mice to control the growth of an E7-expressing tumor challenge, We have previously shown that E7-directed CTL down-regulation correlates with E7 expression in peripheral but not thymic epithelium (T, Dean et al., J, Virol. 73:6166-6170, 1999), The findings have implications for the immunological consequences of E7-expressing tumor development and E7-directed immunization strategies. Generically, the findings illustrate a T-cell immunomodulatory function for a virally encoded human oncoprotein.
Resumo:
One hundred and eight samples from three cultivars of alfalfa were obtained from three cuttings in 1996-1998 to evaluate the relationship between crude protein (CP) and mineral concentrations of alfalfa with cutting and maturation. The CP content drastically decreased from 27.9 to 11.4% on DM with maturity. Highly positive correlations were observed between CP and K in the first and the second cutting of alfalfa. The Ca content remained almost constant throughout the growth period. Four multiparous Holstein cows were assigned an alfalfa silage diet or an orchardgrass silage diet from 3 weeks prepartum to 1 week postpartum to examine the effect on the mineral balance. In the prepartum and postpartum diet, the roughage to concentrate ratio was 70:30 and 50:50, with alfalfa being 50 and 100% of the roughage, respectively. The alfalfa contained 1.93% of K. No metabolic disorders occurred, but the body weight decreased drastically from 1 to 6 days postpartum with each diet because of the high milk production immediately after the parturition. Positive retention of N, Ca, P, Mg, and K was observed prepartum, whereas the cows had negative N and mineral retention from 2 to 4 days postpartum. The Ca and P absorption, and Mg retention of cows with the alfalfa diet were higher than with the grass diet. The plasma Ca and inorganic P were not affected by diet, but the plasma PTH at parturition and plasma hydroxyproline from 1 week prepartum to 1 week postpartum were higher with the alfalfa diet. These results suggest that the low K alfalfa is suitable not only to prevent the incidence of milk fever but also to increase Ca, P and Mg utilization of periparturient cows, but the mineral supplementation is needed for the postpartum cows immediately after the parturition. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Human V alpha 24NKT cells are activated by alpha -galactosylceramide (alpha -GalCer)-pulsed dendritic cells in a CD1d-dependent and a T-cell receptor-mediated manner. Here, we demonstrate that CD4(+)V alpha 24NKT cells derived from a patient with acute myeloid leukemia (AML) M4 are phenotypically similar to those of healthy donors and, in common with those derived from healthy donors, express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) when the cells are activated by alpha -GalCer-pulsed dendritic cells but not prior to activation. We also show that myeloid that human activated CD4(+)V alpha 24NKT cells induced apoptosis of human leukemia cells in vivo. This is the first evidence that activated V alpha 24NKT cells express TRAIL and that TRAIL causes apoptosis of monocytic leukemia cells from patients with AML M4 in vitro and in vivo. Adoptive immune therapy with activated V alpha 24NKT cells, or other strategies to increase activated V alpha 24NKT cells in vivo, may be of benefit to patients with AML M4.
Resumo:
Early endosomal antigen I (EEAI) is known to be a marker of early endosomes and in cultured hippocampal neurons it preferentially localizes to the dendritic but not the axonal compartment. We show in cultured dorsal root ganglia and superior cervical ganglia neurons that EEAI localizes to the cell bodies and the neurites of both sensory and sympathetic neurons. We then show in vivo using a ligated rat sciatic nerve that EEAI significantly accumulates on the proximal side and not on the distal side of the ligation. This suggests that EEAI is transported in the anterograde direction in axons either as part of the homeostatic process or to the nerve ligation site in response to nerve injury. NeuroReport 12:281-284 (C) 2001 Lippincott Williams & Wilkins.