983 resultados para native area


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+-K+ ATPases have been observed and located by in situ AFM and single molecule recognition technique, topography and recognition imaging (TREC) that is a unique technique to specifically identify single protein in complex during AFM imaging. Na+-K+ ATPases were well distributed in the inner leaflet of cell membranes with about 10% aggregations in total recognized proteins. The height of Na+-K+ ATPases measured by AFM is in the range of 12-14 nm, which is very consistent with the cryoelectron microscopy result. The unbinding force between Na+-K+ ATPases in the membrane and anti-ATPases on the AFM tip is about 80 pN with the apparent loading rate at 40 nN/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the implications of a pellet experiment,we have designed and implemented a low temperature(≤90℃) approach to generate native patterned,vertically aligned ZnO nanoarrys without any templates or catalysts.This simple,economic and spontaneous patterning process offers a promising avenue for overcoming several inherent limitations of the artificial manners[1].While the purity,orientation and electrical properties of the as prepared materials allow them to be applied in various fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Thermodynamic studies on Ce(IV) extraction with primary amine N1923 demonstrate that primary amine N1923 is an excellent extractant for separation of Ce(IV) from Re(III). In order to clarify the mechanism of extraction and to optimize the parameters in practical extraction systems used in the rare earth industry, the extraction kinetics was investigated using a constant interfacial area cell with laminar flow in the present work.RESULTS: The data indicate that the rate constant (k(ao).) becomes constant when stirring speed exceeds 250 rpm. The apparent forward extraction rate is calculated to be 10(-1.70). The activation energy (E.) was calculated to be 20.5 kJ/mol from the slope of log kao against 1000/T. The minimum bulk concentration of the extractant necessary to saturate the interface (C-min) is lower than 10(-5) mol L-1.CONCLUSION: Studies of interfacial tension and the effects of stirring rate and specific interfacial area on the extraction rate show that the extraction rate is kinetically controlled, and a mass transfer model has been proposed. The rate equation has been obtained as: -d[Ce(IV)]/dt = 10(-1.70)[Ce(IV)] [(RNH3)(2)SO4](1.376). The rate-controlling step has been evaluated from analysis of the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential extraction procedures were widely applied for speciation of radioactive elements. In this study, the sequential extraction procedure developed by Martinez-Aguirre was employed for quantification of different chemical forms of thorium in the soil. The total amount of thorium in contaminated soil was much higher by four-fold than the local background value. The soil properties affect the amount of thoriurn and distribution of fractions in contaminated soil. Results showed that the proportion of thorium in soils from Baotou was found as the residual fraction (F5 + F6) > absorbed fraction (F3), coprecipitated fraction (F4) > carbonates fraction (172) and exchangeable fraction (F1) that could be available to plants. The recovery, calculated by ratio of the sum of the six fractions to the pseudo-total content of thorium, was in the range from 96% to 110%. A comparison was carried out between the sequential extraction and the single extraction to evaluate the selectivity of the extractants. It was found that the amount of thorium of absorbed fraction (H) was higher in the single extraction than that estimated in the sequential extraction, possibly duo to transform of the labile form. While for non-residual fraction analysis, the single extraction scheme was a desirable alternative to the sequential extraction procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetics and mechanism of stripping of yttrium(III) previously extracted by mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272, HA), and 2-ethylhexyl phosphonic acid mono-2-ethylhexl ester (P507, HB) dissolved in heptane have been investigated by constant interfacial-area cell by laminar flow. The corresponding equilibrium stripping equation and equilibrium constant were obtained. The studies of effects of the stirring rate and temperature on the stripping rate show that the stripping regime is dependent on the stripping conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of mixtures of Cyanex 272 and P507 at heptane-water interfaces makes the interface the most probable locale for the chemical reactions. The stripping rate constant is obtained, and the value is compared with that of the system with Cyanex 272 and P507 alone. It is concluded that the stripping ability with the mixtures is easier than that of P507 due to lower the activation energy of the mixtures. The stripping rate equation has also been obtained, and the rate-determining steps are the two-step interfacial chemical reactions as predicted from interfacial reaction models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel "bottom-up" approach to highly controllable nanoelectrode ensembles (NEEs) has been developed using colloidal nanoparticle self-assembly techniques. Ibis solution-based strategy allows flexible control over nanoelectrode size, shape, and interspacing of the as-prepared NEEs. Atomic force microscopy (AFM) was proved to be a powerful tool to monitor the NEE topography, which yields parameters that can be used to calculate the fractional nanoelectrode area of the NEEs. AFM, ac impedance, and cyclic voltammetry studies demonstrate that most of nanoelectrodes on the NEEs (at least by 9-min self-assembly) are not diffusionally isolated under conventional ac frequency range and scan rates. As a result, the NEEs behave as "nanoelectrode-patch" assemblies. Besides, the as-prepared NEEs by different self-assembling times show an adjustable sensitivity to heterogeneous electron-transfer kinetics, which may be helpful to sensor applications. Like these NEEs constructed by other techniques, the present NEEs prepared by chemical self-assembly also exhibit the enhancement of electroanalytical detection limit consistent with NEE theory prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method is employed for the simultaneous determination of both the calibration constant of an electrochemical quartz crystal microbalance (EQCM) and the active surface area of a polycrystalline gold electrode. A gold electrode: is immersed into a 1 mM KI/1 M H2SO4 solution and on which forms a neutral monolayer. The adsorbed iodine can then be completely oxidized into IO3-. The active surface area of a gold electrode can be obtained from the net electrolytic charge of the oxidation process, and the calibration constant in the EQCM can be calculated from the corresponding frequency shift. The result shows that this method is simple, convenient and valid. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ Fourier transform infra-red (FTIR) spectra of native and thermally denatured calf thymus DNA (CT DNA) adsorbed and/or oxidized at a glassy carbon (GC) electrode surface are reported. The adsorption of native DNA occurs throughout the potential range (-0.2 similar to 1.3 V) studied, and the adsorbing state of DNA at electrode surface is changed from through the C=O band of bases and pyrimidine rings to through the C=O of cytosine and imidazole rings while the potential shifts negatively from 1.3 V to -0.2 V. An in-situ FTIR spectrum of native CT DNA adsorbed at GC electrode surface is similar to that of the dissolved DNA, indicating that the structure of CT DNA is not distorted while it is adsorbed at the GC electrode surface. In the potential range of -0.2 similar to 1.30 V, the temperature-denatured CT DNA is adsorbed at the electrode surface first, then undergoes electrochemical oxidation reaction and following that, diffuses away from the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.