974 resultados para music retrieval
Resumo:
Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010–2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer observations for the different versions of each algorithm globally (land and coastal) and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional), which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust).
Resumo:
A Brain-computer music interface (BCMI) is developed to allow for continuous modification of the tempo of dynamically generated music. Six out of seven participants are able to control the BCMI at significant accuracies and their performance is observed to increase over time.
Resumo:
Weather is frequently used in music to frame events and emotions, yet quantitative analyses are rare. From a collated base set of 759 weather-related songs, 419 were analysed based on listings from a karaoke database. This article analyses the 20 weather types described, frequency of occurrence, genre, keys, mimicry, lyrics and songwriters. Vocals were the principal means of communicating weather: sunshine was the most common, followed by rain, with weather depictions linked to the emotions of the song. Bob Dylan, John Lennon and Paul McCartney wrote the most weather-related songs, partly following their experiences at the time of writing.
Resumo:
In this work we explore the synergistic use of future MSI instrument on board Sentinel-2 platform and OLCI/SLSTR instruments on board Sentinel-3 platform in order to improve LST products currently derived from the single AATSR instrument on board the ENVI- SAT satellite. For this purpose, the high spatial resolu- tion data from Setinel2/MSI will be used for a good characterization of the land surface sub-pixel heteroge- neity, in particular for a precise parameterization of surface emissivity using a land cover map and spectral mixture techniques. On the other hand, the high spectral resolution of OLCI instrument, suitable for a better characterization of the atmosphere, along with the dual- view available in the SLTSR instrument, will allow a better atmospheric correction through improved aero- sol/water vapor content retrievals and the implementa- tion of novel cloud screening procedures. Effective emissivity and atmospheric corrections will allow accu- rate LST retrievals using the SLSTR thermal bands by developing a synergistic split-window/dual-angle algo- rithm. ENVISAT MERIS and AATSR instruments and different high spatial resolution data (Landsat/TM, Proba/CHRIS, Terra/ASTER) will be used as bench- mark for the future OLCI, SLSTR and MSI instruments. Results will be validated using ground data collected in the framework of different field campaigns organized by ESA.
Resumo:
We establish a methodology for calculating uncertainties in sea surface temperature estimates from coefficient based satellite retrievals. The uncertainty estimates are derived independently of in-situ data. This enables validation of both the retrieved SSTs and their uncertainty estimate using in-situ data records. The total uncertainty budget is comprised of a number of components, arising from uncorrelated (eg. noise), locally systematic (eg. atmospheric), large scale systematic and sampling effects (for gridded products). The importance of distinguishing these components arises in propagating uncertainty across spatio-temporal scales. We apply the method to SST data retrieved from the Advanced Along Track Scanning Radiometer (AATSR) and validate the results for two different SST retrieval algorithms, both at a per pixel level and for gridded data. We find good agreement between our estimated uncertainties and validation data. This approach to calculating uncertainties in SST retrievals has a wider application to data from other instruments and retrieval of other geophysical variables.
Resumo:
The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.
Resumo:
Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,
Resumo:
Traditional content-based image retrieval (CBIR) systems use low-level features such as colors, shapes, and textures of images. Although, users make queries based on semantics, which are not easily related to such low-level characteristics. Recent works on CBIR confirm that researchers have been trying to map visual low-level characteristics and high-level semantics. The relation between low-level characteristics and image textual information has motivated this article which proposes a model for automatic classification and categorization of words associated to images. This proposal considers a self-organizing neural network architecture, which classifies textual information without previous learning. Experimental results compare the performance results of the text-based approach to an image retrieval system based on low-level features. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.
Resumo:
Denna kandidatuppsats avhandlar tre stycken analyser av tre stycken filmscener från filmerna A Clockwork Orange, Reservoir Dogs och Watchmen, tre stycken exempel på scener där så kallad anempathetic music används. Denna form av musik kan beskrivas som att den distanserar sig från vad som händer i den rörliga bilden genom att förmedla den motsatta känslan, till exempel om musiken är glad och lättsam medan en våldtäkt sker i bild. Denna uppsats analyserar i dessa tre analysexempel vad sådan filmmusik kan bidra med för berättarfunktioner och meningspotential i filmexemplens narrativ. Resultaten från analysen visade på att musiken i de tre valda analysexemplen bidrar till ökad reflektion hos publiken och hur detta möjliggör för att anempathetic music kan ses som empathetic mot publiken och deras tolkning av filmscenernas narrativ.
Resumo:
The aim of the project is to examine the music salon in Falun as a part of the mining community and in the historical context of European salon culture. A specifc goal is to develop a deeper understanding about the salon when it comes to education and pedagogic ideas. Of a certain interest is Johan Henrik Munktell’s (1804-1861) education travelling (bildningsresor). Inspired by Mendelssohn’s music salon in Berlin and the early salons in Upp-sala he created his own salon in Grycksbo. A letter collection from J.H. Munktell to his father J.J. Munktell in 1828-30 can be considered a unique historical material, which places the salon in Falun in a continental context of culture, education and industrial pretensions. The results have potential to extend the knowledge of Nordic salon culture and how it has infuenced general pedagogy and music education.