999 resultados para mechanical aeration
Resumo:
Power electronic modules distinguish themselves from other modules by their high power operation. These modules are used extensively in high power application markets such as aerospace, automotive, industrial and traction and drives. This paper discusses typical packaging technologies for power electronics modules. It also discusses the latest results from a UK research project investigating the physics-of-failure approach to reliability analysis and predictions for power modules. An integrated design enviroment for incorporating of affects of uncertainty into the design environment was outlined.
Resumo:
Micro-electronic displays are sensitive devices and its performance is easily affected by external environmental factors. To enable the display to perform in extreme conditions, the device must be structurally strengthened, the effects of this packaging process was investigated. A thermo-mechanical finite element analysis was used to discover potential problems in the packaging process and to improve the overall design of the device. The main concern from the analysis predicted that displacement of the borosilicate glass and the Y stress of the adhesive are important. Using this information a design which reduced the variation of displacement and kept the stress to a minimum was suggested
Resumo:
The performance enhancement of AMLCD's has been hindered with problems encountered during the curing process, such as window framing and de-lamination of the glass and adhesive. A thermo-mechanical analysis using FEA was conducted to help optimise the design of the rugged display and enhance the optical performance.
Resumo:
This paper presents modeling results about the performance of flexible substrates when subjected to higher lead-free reflow temperatures. Both adhesiveless and adhesive types of polyimide substrates were studied. Finite element (FE) models of flex substrates were built, two copper tracks located in the centre of the substrate was considered. The thermal induced shear stress in the flex substrate during the lead-free reflow process was studied and the effect of the design changes including the track thickness, flex thickness, and copper width were studied. For both types of flexes, the one of most important variables for minimizing damage to the substrate is the height of the copper tracks. The height of flex and the width of copper track show less impact. Beside of the geometry effects, the increase in reflow peak temperature can also result in a significant increase in the interfacial stress between the copper track and flex. Higher stresses were identified within the adhesive flex due to the big CTE mismatch between the copper and adhesive/dielectric
Resumo:
Solder joints are often the cause of failure in electronic devices, failing due to cyclic creep induced ductile fatigue. This paper will review the modelling methods available to predict the lifetime of SnPb and SnAgCu solder joints under thermo-mechanical cycling conditions such as power cycling, accelerated thermal cycling and isothermal testing, the methods do not apply to other damage mechanisms such as vibration or drop-testing. Analytical methods such as recommended by the IPC are covered, which are simple to use but limited in capability. Finite element modelling methods are reviewed, along with the necessary constitutive laws and fatigue laws for solder, these offer the most accurate predictions at the current time. Research on state-of-the-art damage mechanics methods is also presented, although these have not undergone enough experimental validation to be recommended at present
Resumo:
This paper will analyse two of the likely damage mechanisms present in a paper fibre matrix when placed under controlled stress conditions: fibre/fibre bond failure and fibre failure. The failure process associated with each damage mechanism will be presented in detail focusing on the change in mechanical and acoustic properties of the surrounding fibre structure before and after failure. To present this complex process mathematically, geometrically simple fibre arrangements will be chosen based on certain assumptions regarding the structure and strength of paper, to model the damage mechanisms. The fibre structures are then formulated in terms of a hybrid vibro-acoustic model based on a coupled mass/spring system and the pressure wave equation. The model will be presented in detail in the paper. The simulation of the simple fibre structures serves two purposes; it highlights the physical and acoustic differences of each damage mechanism before and after failure, and also shows the differences in the two damage mechanisms when compared with one another. The results of the simulations are given in the form of pressure wave contours, time-frequency graphs and the Continuous Wavelet Transform (CWT) diagrams. The analysis of the results leads to criteria by which the two damage mechanisms can be identified. Using these criteria it was possible to verify the results of the simulations against experimental acoustic data. The models developed in this study are of specific practical interest in the paper-making industry, where acoustic sensors may be used to monitor continuous paper production. The same techniques may be adopted more generally to correlate acoustic signals to damage mechanisms in other fibre-based structures.
Resumo:
In this paper the reliability of the isolation substrate and chip mountdown solder interconnect of power modules under thermal-mechanical loading has been analysed using a numerical modelling approach. The damage indicators such as the peel stress and the accumulated plastic work density in solder interconnect are calculated for a range of geometrical design parameters, and the effects of these parameters on the reliability are studied by using a combination of the finite element analysis (FEA) method and optimisation techniques. The sensitivities of the reliability of the isolation substrate and solder interconnect to the changes of the design parameters are obtained and optimal designs are studied using response surface approximation and gradient optimization method
Resumo:
Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.
Resumo:
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability.
Resumo:
The silicone elastomer solubilities of a range of drugs and pharmaceutical excipients employed in the development of silicone intravaginal drug delivery rings (polyethylene glycols, norethisterone acetate, estradiol, triclosan, oleyl alcohol, oxybutynin) have been determined using dynamic mechanical analysis. The method involves measuring the concentration-dependent decrease in the storage modulus associated with the melting of the incorporated drug/excipient, and extrapolation to zero change in storage modulus. The study also demonstrates the effect of drug/excipient concentrations on the mechanical stiffness of the silicone devices at 37°C.
Resumo:
Background:
Internationally, nurse-directed protocolised-weaning has been evaluated by measuring its impact on patient outcomes. The impact on nurses’ views and perceptions has been largely ignored.
Aim:
To determine the change in intensive care nurses’ perceptions, satisfaction, knowledge and attitudes following the introduction of nurse-directed weaning. Additionally, views were obtained on how useful protocolised-weaning was to practice.
Methods:
The sample comprised nurses working in general intensive care units in three university-affiliated hospitals. Nurse-directed protocolised-weaning was implemented in one unit (intervention group); two ICUs continued with usual doctor-led practice (control group). Nurses’ perceptions, satisfaction, knowledge and attitudes were measured by self-completed questionnaires before (Phase I) and after the implementation of nurse-directed weaning (Phase II) in all units.
Results:
Response rates were 79% (n=140n=140) for Phase 1 and 62% (n=132n=132) for Phase II. Regression-based analyses showed that changes from Phase I to Phase II were not significantly different between the intervention and control groups. Sixty-nine nurses responded to both Phase I and II questionnaires. In the intervention group, these nurses scored their mean perceived level of knowledge higher in Phase II (6.39 vs 7.17, p=0.01p=0.01). In the control group, role perception (4.41 vs 4.22, p=0.01p=0.01) was lower and, perceived knowledge (6.03 vs 6.63, p=0.04p=0.04), awareness of weaning plans (6.09 vs 7.06, p=0.01p=0.01) and satisfaction with communication (5.28 vs 6.19, p=0.01p=0.01) were higher in Phase II. The intervention group found protocolised weaning useful in their practice (75%): this was scored significantly higher by junior and senior nurses than middle grade nurses (p=0.02p=0.02).
Conclusion
We conclude that nurse-directed protocolised-weaning had no effect on nurses’ views and perceptions due to the high level of satisfaction which encouraged nurses’ participation in weaning throughout. Control group changes are attributed to a ‘reactive effect’ from being study participants. Weaning protocols provide a uniform method of weaning practice and are particularly beneficial in providing safe guidance for junior staff.