994 resultados para marine affairs
Resumo:
Two new and one known squalenoid-derived triterpenoids. namely, laurenmariannol (1) and (21 alpha)-21-hydroxythyrsiferol (2). and the known thyrsiferol (3) were isolated and identified from the marine red alga Laurencia mariannensis, which was collected off the coast of Hainan and Weizhou Islands of China. The structures of these compounds were established by means of spectroscopic analyses, as well as by comparison with literature data. Compounds I and 2 displayed significant cytotoxic activity against P-388 tumor cells with IC50 values of 0.6 and 6.6 mu g/ml, respectively.
Resumo:
Two new brominated diterpenes, namely, laurendecumtriol (1) and 11-O-deacetylpinnaterpene C (2), one new polybromoindole, 2,3,4,6-tetrabromo-1-methyl-1H-indole (7), and six known natural products were isolated and identified from the marine red alga Laurencia decumbens. Their structures were elucidated on the basis of detailed spectroscopic and mass-spectrometric analysis as well as by comparison with literature data. Based on 2D-NMR experiments, the previously reported NMR data for pinnaterpene C (3) were reassigned.
Resumo:
Cultivation of the fungal strain Eurotium rubrum, an endophytic fungus that was isolated from the inner tissue of stems of the mangrove plant Hibiscus tiliaceus, resulted in the isolation of two new dioxopiperazine derivatives, namely, dehydrovariecolorin L (1) and dehydroechinulin (2), together with eight known dioxopiperazine compounds including variecolorin L (3), echinulin (4), isoechinulin A (5), dihydroxyisoechinulin A (6), preechinulin (7), neoechinulin A (8), neoechinulin E (9), and cryptoechinuline D (10). The structures of the isolated compounds were determined by extensive analysis of their spectroscopic data as well as by comparison with literature. Compounds 1, 2, 9, and 10 were investigated for their a,a-diphenyl-beta-picrylhydrazyl (DPPH) radical-scavenging activity. In addition, the new compounds, 1 and 2, were evaluated for their cytotoxic activity against the P-388, HL-60, and A549 cell lines.
Resumo:
Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.
Resumo:
An orange-pigmented, Gram-negative, nonmotile, strictly aerobic and oxidase- and catalase-positive bacterium (SM-A87(T)) was isolated from the deep-sea sediment of the southern Okinawa Trough area. The main fatty acids were i15 : 0, i17 : 0 3OH, i15 : 1 G, i17 : 1 omega 9c, 15 : 0, i15 : 0 3OH and summed feature 3 (comprising i-15 : 0 2OH and/or 16 : 1 omega 7c). MK-6 was the predominant respiratory quinone. DNA G+C content was 35.8 mol%. Flexirubin-type pigments were absent. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain SM-A87(T) formed a distinct lineage within the family Flavobacteriaceae, with < 93% sequence similarity to the nearest strain of genus Salegentibacter. Moreover, strain SM-A87(T) could be distinguished from the nearest phylogenetic neighbors by a number of chemotaxonomic and phenotypic properties. On the basis of polyphasic analyses, it is proposed that strain SM-A87(T) be classified in a novel genus and a new species in the family Flavobacteriaceae, designated Wangia profunda gen. nov., sp. nov. The type strain is SM-A87(T) (CCTCC AB 206139(T)=DSM 18752).
Resumo:
Indexes of sediment grain size, sedimentation rates, geochemical composition, heavy minerals, benthic foraminiferal fauna, indicator species of the Kuroshio Current, paleo-SST and carbonate dissolution of core E017 conformably suggest a great marine environmental change occurring at about 10.1-9.2 cal. kaBP in the southern Okinawa Trough, which may correspond to the strengthening of the Kuroshio Warm Current and re-entering the Okinawa Trough through the sea area off northeast Taiwan. The invasion of Kuroshio current has experienced a process of gradual strengthening and then weakening, and its intensity became more fluctuation during the last 5000 years. Compared to the transition of sediment grain size, geochemical composition and heavy minerals, the foraminiferal faunas show a 900-year lag, which may indicate that the invasion of Kuroshio Current and the consequent sea surface and deep-water environmental changes is a gradual process, and fauna has an obvious lag compared to environment altering. The carbonate dissolution of the Okinawa Trough has had an apparent strengthening since 9.2 cal. kaBP, and reached a maximum in the late 3000 years, which may be caused by the deep-water environmental changes due to the invasion of Kuroshio Current.
Resumo:
A new theoretical framework of tracer methods is proposed in the present contribution, on the basis of mass conservation. This model is applicable for both artificial and natural tracers. It can be used to calculate the spatial distribution patterns of sediment transport rate, thus providing independent information and verification for the results derived from empirical formulae. For the procedures of the calculation, first, the tracer concentration and topographic maps of two times are obtained. Then, the spatial and temporal changes in the concentration and seabed elevation are calculated, and the boundary conditions required are determined by field observations (such as flow and bedform migration measurements). Finally, based upon eqs. (1) and (13), the transport rate is calculated and expressed as a function of the position over the study area. Further, appropriate modifications to the model may allow the tracer to have different densities and grain size distributions from the bulk sediment.
Resumo:
Studies of abundance, diversity and distribution of antibiotic-resistant bacteria and their resistance determinants are necessary for effective prevention and control of antibiotic resistance and its dissemination, critically important for public health and environment management. In order to gain an understanding of the persistence of resistance in the absence of a specific antibiotic selective pressure, microbiological surveys were carried out to investigate chloramphenicol-resistant bacteria and the chloramphenicol acetyltransferase resistance genes in Jiaozhou Bay after chloramphenicol was banned since 1999 in China. About 0.15-6.70% cultivable bacteria were chloramphenicol resistant, and the highest abundances occurred mainly in the areas near river mouths or sewage processing plants. For the dominant resistant isolates, 14 genera and 25 species were identified, mostly being indigenous estuarine or marine bacteria. Antibiotic-resistant potential human or marine animal pathogens, such as Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Shewanella algae, were also identified. For the molecular resistance determinants, the cat I and cat III genes could be detected in some of the resistant strains, and they might have the same origins as those from clinical strains as determined via gene sequence analysis. Further investigation about the biological, environmental and anthropogenic mechanisms and their interactions that may contribute to the persistence of antibiotic-resistance in coastal marine waters in the absence of specific antibiotic selective pressure is necessary for tackling this complicated environmental issue.
Resumo:
The impact of the Huanghe (Yellow) River outflows on its estuary was investigated with river gauging and shipboard hydrographic observations. The river flux has been decreasing dramatically; the discharges of water and sediment in the 1990s dropped to 27.4% and 31.9% of those in the 1950s, respectively, resulting in frequent and lengthy events of downstream channel dry-up since the 1970s. There were accumulatively 897 zero-flow days during the 1990s in the river course below the Lijin Hydrological Station, 100 km upstream from the river mouth, which is 82.4% of that in 1972. As freshwater input decreases, river-borne nutrients to the estuarine increased significantly. Concentration of dissolved inorganic nitrogen (DIN) in the 1990s was four times of that in 1950s. Changes in amount and content of the riverine inputs have greatly affected the estuarine ecosystem. Over the past several decades, sea surface temperature and salinity in the estuary and its adjacent waters increased and their distribution pattern altered in response to the reduction of freshwater inflow. The distribution of and seasonal succession in nutrient concentrations in the surface layer have also changed with a shift of river outlet and the decrease in riverine nutrient loads. Furthermore, deterioration of estuarine ecosystem by less river input has decreased primary productivity in the deltaic region waters, and in turn depressed the fishery. (C) 2008 Published by Elsevier Ltd.
Resumo:
Locating the quantitized natural sediment fingerprints is an important work for marine sediment dynamics study. The total of 146 sediment samples were collected from the Shelf of the East China Sea and five rivers, including Huanghe (Yellow), Changjiang (Yangtze), Qiantang, Ou and Min River. The sediment grain size and the contents of rare earth elements (REEs) were measured with laser particle size analyzer and ICP-MS technology. The results show that absolute REE content (Sigma REE) and the concentration ratio of light REEs to heavy REEs (L/HREE) are different in the sediments among those rivers. There are higher REE contents in being less than 2 m and 2-31 mu m fractions in the Changjiang Estuary surface sediments. The REE contents of bulk sediment are dominated by the corresponding values of those leading size-fractions. Sigma REE of sediment is higher close to the estuaries and declines seaward on the inner shelf of the East China Sea (ECS). The L/HREE ratio has a tendency of increase southward from 28 degrees N. Hydrodynamic conditions plays a predominate role on spacial distributions of the surficial sediment's REE parameters. In some situations, the currents tend to remove the coarser light grains from initial populations, as well as the deposit of the finer heavy mineral grains. In other situations, the currents will change the ratio of sediment constituents, such as ratio between silts and clays in the sediments. As a result, the various values of Sigma REE or L/HREE ratio in different bulk sediments are more affected by the change of size-fractions than source location. Under the long-term stable hydrodynamic environment, i.e., the East China Sea Shelf, new sediment transport model based on the size and density gradation concept may help to understand the spatial distribution patterns of REE parameters.
Resumo:
The effects of feeding level on growth, retention efficiency, faeces production and energy partitioning of redlip mullet were studied. A practical diet was used and fed at six levels from starvation, 1%, 2%, 3%, 4% of body weight (BW) to satiation for 3 weeks. The temperature was kept at 24 +/- 1 degrees C. Reducing the feeding amount resulted in significantly lower weight gain, and retention efficiency was significantly affected by feeding levels and attained the maximum at maximum feeding intake. Feeding 2% BW was the minimum required for fish to maintain growth. Fish carcass composition under different feeding levels could be divided into three groups: (1) starvation and FL1; (2) FL2 and FL3 and (3) FL4 and satiation, with significant differences among the groups but no differences in the groups except that ash content remained at constant value. Body composition of fish of group 2 was close to initial fish. The thermal-unit coefficient was 0.0381 at satiation, and significantly increased with increasing feeding levels. In order to accurately estimate basal metabolism (HeE), another trial on the relationship between HeE (kJ) and BW (g) was carried out. An exponential curve as HeE=0.1255BW(0.8386) explained this relationship. Intake energy (IE) increased from 11.30 to 63.08 kJ per fish, matching with different feeding levels. Energy allocated to growth of IE decreased with reducing feeding amount. There was a linear relationship between metabolism energy and retention energy in percentage.
Resumo:
Magnetotactic bacteria are a heterologous group of motile prokaryotes, ubiquitous in aquatic habitats and cosmopolitan in distribution. Here, we studied the diversity of magnetotactic bacteria in a seawater pond within an intertidal zone at Huiquan Bay in the China Sea. The pond is composed of a permanently submerged part and a low tide subregion. The magnetotactic bacteria collected from the permanently submerged part display diversity in morphology and taxonomy. In contrast, we found a virtually homogenous population of ovoid-coccoid magnetotactic bacteria in the low tide subregion of the pond. They were bilophotrichously flagellated and exhibited polar magnetotactic behaviour. Almost all cells contained two chains of magnetosomes composed of magnetite crystals. Intriguingly, the combination of restriction fragment length polymorphism analysis (RFLP) and sequencing of cloned 16S rDNA genes from the low tide subregion samples as well as fluorescence in situ hybridization (FISH) revealed the presence of a homogenous population. Moreover, phylogenetic analysis indicated that the Qingdao Huiquan low tide magnetotactic bacteria belong to a new genus affiliated with the alpha-subclass of Proteobacteria. This finding suggests the adaptation of the magnetotactic bacterial population to the marine tide.
Resumo:
Twenty-nine marine bacterial strains were isolated from the sponge Hymeniacidon perleve at Nanji island, and antimicrobial screening showed that eight strains inhibited the growth of terrestrial microorganisms. The strain NJ6-3-1 with wide antimicrobial spectrum was identified as Pseudoalteromonas piscicida based on its 16S rRNA sequence analysis. The major antimicrobial metabolite, isolated through bioassay-guide fractionation of TLC bioautography overlay assay, was identified as norharman (a beta-carboline alkaloid) by EI-MS and NMR.
Resumo:
In order to explore marine microorganisms with medical potential, marine bacteria were isolated from seawater, sediment, marine invertebrates and seaweeds collected from different coastal areas of the China Sea. The antimicrobial activities of these bacteria were investigated. Ethyl acetate extracts of marine bacterial fermentation were screened for antimicrobial activities using the method of agar diffusion. The results showed that 42 strains of the isolates have antimicrobial activity. The proportion of active bacteria associated with marine invertebrates (20%) and seaweeds (11%) is higher than that isolated from seawater (7%) and sediment (5%). The active marine bacteria were assigned to the genera Alteromonas, Pseudomonas, Bacillus and Flavobacterium. The TLC autobiographic overlay assay implied that the antimicrobial metabolites produced by four strains with wide antimicrobial spectrum were different. Due to a competitive role for space and nutrient, the marine bacteria associated with marine macroorganisms (invertebrates and seaweeds) could produce more antibiotic substances. These marine bacteria were expected to be potential resources of natural antibiotic products.