963 resultados para lipid levels
Resumo:
Hypoalbuminemia may cause interstitial edema and hemodilution, which we hypothesized may influence serum sodium levels. Our purpose was to compare serum sodium levels of hospitalized adults with or without hypoalbuminemia. All sodium and albumin serum levels of 142 adults hospitalized at general medical wards over a six-month period were searched at a University Hospital mainframe computer. Relevant laboratory data and clinical details were also registered. Hypoalbuminemia was defined by serum albumin concentration < 3.3 g/dl Fisher, Mann-Whitney, and Student's t tests were applied to compare groups with or without hypoalbuminemia. Ninety-nine patients, classified as hypoalbuminemic, had lower blood hemoglobin (10.68 ± 2.62 vs. 13.54 ± 2.41), and sodium (135.1 ± 6.44 vs. 139.9 ± 4.76mEq/l) and albumin (2.74 ± 0.35 vs. 3.58 ± 0.28g/dl) serum levels than non-hypoalbuminemic (n=43). Pearson's coefficient showed a significant direct correlation between albumin and sodium serum levels (r=0.40) and between serum albumin and blood hemoglobin concentration (r=0.46). Our results suggest that hypoalbuminemic adults have lower serum sodium levels than those without hypoalbuminemia, a phenomenon that may be at least partially attributed to body water retention associated with acute phase response syndrome.
Resumo:
Blood glucose levels in the high normal range or even moderate hyperglycemia is the expected profile in septic postoperative patients receiving high-calorie enteral alimentation. The addition of growth hormone as an anabolic agent should additionally reinforce this tendency. In a cancer patient undergoing partial gastrectomy with lymphadenectomy and suffering from postoperative subphrenic abscess and prolonged sepsis, tube feeding (38.3 kcal/kg/day) and growth hormone (0.17 IU/kg/day) were simultaneously administered for 25 days. Blood glucose levels were in the lower limits of the normal range before growth hormone introduction, and continued with a similar tendency during most of the therapeutic period. Two additional complications, namely heart arrest and peripheral edema, were documented during the same period. It is concluded that sepsis was the most likely mechanism for low glucose values, and that high-calorie enteral diet and growth hormone supplementation did not prevent that result. It is uncertain whether heart arrest was due to the drug, but its association with peripheral edema is well documented in clinical series.
Resumo:
PURPOSE: Hyperhomocyst(e)inaemia is an important risk factor for atherosclerosis, which is currently a major cause of death in renal transplant patients. The aim of this study was to assess the influence of immunosuppressive therapy on homocyst(e)inemia in renal transplant recipients. METHODS: Total serum homocysteine (by high performance liquid chromatography), creatinine, lipid profile, folic acid (by radioimmunoassay-RIA) and vitamin B12 (by RIA) concentrations were measured in 3 groups. Group I patients (n=20) were under treatment with cyclosporine, azathioprine, and prednisone; group II (n=9) were under treatment with azathioprine and prednisone; and group III (n=7) were composed of renal graft donors for groups I and II. Creatinine, estimated creatinine clearance, cyclosporine trough level, lipid profile, folic acid, and vitamin B12 concentrations and clinical characteristics of patients were assessed with the aim of ascertaining determinants of hyperhomocyst(e)inemia. RESULTS: Patient ages were 48.8 ± 15.1 yr (group I), 43.3 ± 11.3 yr (group II); and 46.5 ± 14.8 yr (group III). Mean serum homocyst(e)ine (tHcy) concentrations were 18.07 ± 8.29 mmol/l in renal transplant recipients; 16.55 ± 5.6 mmol/l and 21.44 ± 12.1 mmol/l respectively for group I (with cyclosporine) and group II (without cyclosporine) (NS). In renal donors, tHcy was significantly lower (9.07 ± 3.06 mmol/l; group I + group II vs. group III, p<0.008). There was an unadjusted correlation (p<0.10) between age (r=0.427; p<0.005) body weight (r=0.412; p<0.05), serum creatinine (r=0.427; p<0.05), estimated creatinine clearance (r=0.316; p<0.10), and tHcy in renal recipients (group I +II). Independent regressors (r²=0.46) identified in the multiple regression model were age (coefficient= 0.253; p=0.009) and serum creatinine (coefficient=8.07; p=0.045). We found no cases of hyperhomocyst(e)inemia in the control group. In contrast, 38% of renal recipients had hyperhomocyst(e)inemia: 7 cases (35%) on cyclosporine and 4 (45%) without cyclosporine, based on serum normal levels. CONCLUSIONS: Renal transplant recipients frequently have hyperhomocyst(e)inemia. Hyperhomocyst(e)inemia in renal transplant patients is independent of the scheme of immunosuppression they are taking. The older the patients are and the higher are their serum creatinine levels, the more susceptible they are to hyperhomocyst(e)inemia following renal transplantation.