962 resultados para limit of quantitation
Resumo:
Thick sections of Pliocene and Pleistocene biosiliceous clay and ooze were recovered by the Hydraulic Piston Corer (I-IPC) at three northwest Pacific sites (DSDP Sites 578, 579, and 580). They contain a well-preserved paleomagnetic record which made it possible to evaluate diatom events used in low and high latitudes in the transitional region of the northwest Pacific. Equatorial Pacific events are usually isochronons between the equatorial and subarctic regions. However, species which have short ranges in low latitudes tend to have diachronous first and last appearances in higher latitudes. All subarctic North Pacific datum species are present in the sediments at three sites which lie north and south across the subarctic front, but their ranges become shorter in southern regions. They do not penetrate into the equatorial region. Spatial distributions of these events are influenced by the paleo-position of the subarctic front. The migration of species from their home-area outwards, in the form of the first appearance, is related to the fluctuations of the subarctic front. The last appearance of species is a response to the change of the surface water temperature that is beyond the limit of tolerance of the species, or an unstable oceanic environment due to major change of climate.
Resumo:
Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and > 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (> 63 µm) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.