967 resultados para light-activated heterotrophic growth
Resumo:
Coral reefs are in decline worldwide and coral disease is a significant contributing factor. However, etiologies of coral diseases are still not well understood. In contrast with the Caribbean, extremely little is known about coral diseases in the Philippines. In 2005, off Southeast Negros Island, Philippines, I investigated relationships between environmental parameters and prevalence of the two most common coral diseases, ulcerative white spot (UWS) and massive Porites growth anomalies (MPGAs). Samples were collected along a disease prevalence gradient 40.5 km long. Principal component analyses showed prevalence of MPGAs was positively correlated with water column nitrogen, organic carbon of surface sediments, and colony density. UWS was positively correlated with water column phosphorus. This is the first quantitative evidence linking anthropogenically-impacted water and sediment to a higher prevalence of these diseases. Histological and cytological alterations were investigated by comparing tissues from two distinct types of MPGA lesions (types 1 and 2) and healthy coral using light and electron microscopy. Skeletal abnormalities and sloughing, swelling, thinning, and loss of tissues in MPGAs resembled tissues exposed to bacterial or fungal toxins. Both lesion types had decreases in symbiotic zooxanthellae, which supply nutrients to corals. Notable alterations included migrations of chromophore cells (amoebocytes) (1) nocturnally to outer epithelia to perform wound-healing, including plugging gaps and secreting melanin in degraded tissues, and (2) diurnally to the interior of the tissue possibly to prevent shading zooxanthellae in order to maximize photosynthate production. Depletion of melanin (active in wound healing) in type 2 lesions suggested type 2 tissues were overtaxed and less stable. MPGAs contained an abundance of endolithic fungi and virus-like particles, which may result from higher nutrient levels and play roles in disease development. Swollen cells and mucus frequently blocked gastrovascular canals (GVCs) in MPGAs. Type 1 lesions appeared to compensate for impeded flow of wastes and nutrients through these canals with proliferation of new GVCs, which were responsible for the observed thickened tissues. In contrast, type 2 tissues were thin and more degraded. Dysplasia and putative neoplasia were also observed in MPGAs which may result from the tissue regeneration capacity being overwhelmed.
Resumo:
The coccolithophore Emiliania huxleyi was cultured under a broad range of carbonate chemistry conditions to distinguish the effects of individual carbonate system parameters on growth, primary production, and calcification. In the first experiment, alkalinity was kept constant and the fugacity of CO2(fCO2) varied from 2 to 600 Pa (1Pa ~ 10 µatm). In the second experiment, pH was kept constant (pHfree = 8) with fCO2 varying from 4 to 370 Pa. Results of the constant-alkalinity approach revealed physiological optima for growth, calcification, and organic carbon production at fCO2 values of ~20Pa, ~40 Pa, and ~80 Pa, respectively. Comparing this with the constant-pH approach showed that growth and organic carbon production increased similarly from low to intermediate CO2 levels but started to diverge towards higher CO2 levels. In the high CO2 range, growth rates and organic carbon production decreased steadily with declining pH at constant alkalinity while remaining consistently higher at constant pH. This suggests that growth and organic carbon production rates are directly related to CO2 at low (sub-saturating) concentrations, whereas towards higher CO2 levels they are adversely affected by the associated decrease in pH. A pH dependence at high fCO2 is also indicated for calcification rates, while the key carbonate system parameter determining calcification at low fCO2 remains unclear. These results imply that key metabolic processes in coccolithophores have their optima at different carbonate chemistry conditions and are influenced by different parameters of the carbonate system at both sides of the optimum.
Resumo:
Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m**3, and an additional reference plot in the ambient environment (2 m**2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.
Resumo:
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short-term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well-established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2-adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment "high light" did not reveal such genetic divergence whereas growth in a low-salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.
Resumo:
Carbon dioxide and light are two major prerequisites of photosynthesis. Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered stimulatory to marine primary production. Here we show that the combination of an increase in both CO2 and light exposure negatively impacts photosynthesis and growth of marine primary producers. When exposed to CO2 concentrations projected for the end of this century, natural phytoplankton assemblages of the South China Sea responded with decreased primary production and increased light stress at light intensities representative of the upper surface layer. The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns. To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and under varying levels (5-100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone. Above 22-36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to light levels and exhibited reduced thresholds at which light becomes inhibitory. Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities. In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the ocean.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The present data compilation includes dinoflagellates growth rate, grazing rate and gross growth efficiency determined either in the field or in laboratory experiments. From the existing literature, we synthesized all data that we could find on dinoflagellates. Some sources might be missing but none were purposefully ignored. We did not include autotrophic dinoflagellates in the database, but mixotrophic organisms may have been included. This is due to the large uncertainty about which taxa are mixotrophic, heterotrophic or symbiont bearing. Field data on microzooplankton grazing are mostly comprised of grazing rate using the dilution technique with a 24h incubation period. Laboratory grazing and growth data are focused on pelagic ciliates and heterotrophic dinoflagellates. The experiment measured grazing or growth as a function of prey concentration or at saturating prey concentration (maximal grazing rate). When considering every single data point available (each measured rate for a defined predator-prey pair and a certain prey concentration) there is a total of 801 data points for the dinoflagellates, counting experiments that measured growth and grazing simultaneously as 1 data point.