976 resultados para leukocyte subpopulation
Resumo:
Hypothyroidism is a complex clinical condition found in both humans and dogs, thought to be caused by a combination of genetic and environmental factors. In this study we present a multi-breed analysis of predisposing genetic risk factors for hypothyroidism in dogs using three high-risk breeds-the Gordon Setter, Hovawart and the Rhodesian Ridgeback. Using a genome-wide association approach and meta-analysis, we identified a major hypothyroidism risk locus shared by these breeds on chromosome 12 (p = 2.1x10-11). Further characterisation of the candidate region revealed a shared ~167 kb risk haplotype (4,915,018-5,081,823 bp), tagged by two SNPs in almost complete linkage disequilibrium. This breed-shared risk haplotype includes three genes (LHFPL5, SRPK1 and SLC26A8) and does not extend to the dog leukocyte antigen (DLA) class II gene cluster located in the vicinity. These three genes have not been identified as candidate genes for hypothyroid disease previously, but have functions that could potentially contribute to the development of the disease. Our results implicate the potential involvement of novel genes and pathways for the development of canine hypothyroidism, raising new possibilities for screening, breeding programmes and treatments in dogs. This study may also contribute to our understanding of the genetic etiology of human hypothyroid disease, which is one of the most common endocrine disorders in humans.
Resumo:
OBJECTIVE Recent advances in different MRI sequences have enabled direct visualization and targeting of the Globus pallidus internus (GPi) for DBS surgery. Modified Driven Equilibrium Fourier Transform (MDEFT) MRI sequences provide high spatial resolution and an excellent contrast of the basal ganglia with low distortion. In this study, we investigate if MDEFT sequences yield accurate and reliable targeting of the GPi and compare direct targeting based on MDEFT sequences with atlas-based targeting. METHODS 13 consecutive patients considered for bilateral GPi-DBS for dystonia or PD were included in this study. Preoperative targeting of the GPi was performed visually based on MDEFT sequences as well as by using standard atlas coordinates. Postoperative CT imaging was performed to calculate the location of the implanted leads as well as the active electrode(s). The coordinates of both visual and atlas based targets were compared. The stereotactic coordinates of the lead and active electrode(s) were calculated and projected on the segmented GPi. RESULTS On MDEFT sequences the GPi was well demarcated in most patients. Compared to atlas-based planning the mean target coordinates were located significantly more posterior. Subgroup analysis showed a significant difference in the lateral coordinate between dystonia (LAT = 19.33 ± 0.90) and PD patients (LAT = 20.67 ± 1.69). Projected on the segmented preoperative GPi the active contacts of the DBS electrode in both dystonia and PD patients were located in the inferior and posterior part of the structure corresponding to the motor part of the GPi. CONCLUSIONS MDEFT MRI sequences provide high spatial resolution and an excellent contrast enabling precise identification and direct visual targeting of the GPi. Compared to atlas-based targeting, it resulted in a significantly different mean location of our target. Furthermore, we observed a significant variability of the target among the PD and dystonia subpopulation suggesting accurate targeting for each individual patient.
Resumo:
Expression of the hyaluronan-mediated motility receptor (RHAMM, CD168) predicts adverse clinicopathological features and decreased survival for colorectal cancer (CRC) patients. Using full tissue sections, we investigated the expression of RHAMM in tumor budding cells of 103 primary CRCs to characterize the biological processes driving single-cell invasion and early metastatic dissemination. RHAMM expression in tumor buds was analyzed with clinicopathological data, molecular features and survival. Tumor budding cells at the invasive front of CRC expressed RHAMM in 68% of cases. Detection of RHAMM-positive tumor budding cells was significantly associated with poor survival outcome (P = .0312), independent of TNM stage and adjuvant therapy in multivariate analysis (P = .0201). RHAMM-positive tumor buds were associated with frequent lymphatic invasion (P = .0007), higher tumor grade (P = .0296), and nodal metastasis (P = .0364). Importantly, the prognostic impact of RHAMM expression in tumor buds was maintained independently of the number of tumor buds found in an individual case (P = .0246). No impact of KRAS/BRAF mutation, mismatch repair deficiency and CpG island methylation was observed. RHAMM expression identifies an aggressive subpopulation of tumor budding cells and is an independent adverse prognostic factor for CRC patients. These data support ongoing efforts to develop RHAMM as a target for precision therapy.
Resumo:
PURPOSE The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics. METHODS We genotyped 4,149 markers in HIV-positive individuals. Variants allowed for prediction of 17 traits relevant to HIV medical care, inference of patient ancestry, and imputation of human leukocyte antigen (HLA) types. Genetic data were processed under a privacy-preserving framework using homomorphic encryption, and clinical reports describing potentially actionable results were delivered to health-care providers. RESULTS A total of 230 patients were included in the study. We demonstrated the feasibility of encrypting a large number of genetic markers, inferring patient ancestry, computing monogenic and polygenic trait risks, and reporting results under privacy-preserving conditions. The average execution time of a multimarker test on encrypted data was 865 ms on a standard computer. The proportion of tests returning potentially actionable genetic results ranged from 0 to 54%. CONCLUSIONS The model of implementation presented herein informs on strategies to deliver genomic test results for clinical care. Data encryption to ensure privacy helps to build patient trust, a key requirement on the road to genomic-based medicine.Genet Med advance online publication 14 January 2016Genetics in Medicine (2016); doi:10.1038/gim.2015.167.
Resumo:
Waddlia chondrophila is a known bovine abortigenic Chlamydia-related bacterium that has been associated with adverse pregnancy outcomes in human. However, there is a lack of knowledge regarding how W. chondrophila infection spreads, its ability to elicit an immune response and induce pathology. A murine model of genital infection was developed to investigate the pathogenicity and immune response associated with a W. chondrophila infection. Genital inoculation of the bacterial agent resulted in a dose-dependent infection that spread to lumbar lymph nodes and successively to spleen and liver. Bacterial-induced pathology peaked on day 14, characterized by leukocyte infiltration (uterine horn, liver, and spleen), necrosis (liver) and extramedullary hematopoiesis (spleen). Immunohistochemistry demonstrated the presence of a large number of W. chondrophila in the spleen on day 14. Robust IgG titers were detected by day 14 and remained high until day 52. IgG isotypes consisted of high IgG2a, moderate IgG3 and no detectable IgG1, indicating a Th1-associated immune response. This study provides the first evidence that W. chondrophila genital infection is capable of inducing a systemic infection that spreads to major organs, induces uterus, spleen, and liver pathology and elicits a Th1-skewed humoral response. This new animal model will help our understanding of the mechanisms related to intracellular bacteria-induced miscarriages, the most frequent complication of pregnancy that affects one in four women.
Resumo:
BACKGROUND Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. QUESTIONS/PURPOSES In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. METHODS L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. RESULTS More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF occurred between 3 and 7 days and of IL-1β between Days 1 and 7. IGF-1 and PDGF-AB were released until Day 1 in L-PRP and blood clot, in contrast to sustained release over the first 3 days in L-PRF. The strongest migration of MSC occurred in response to L-PRF, and more HUVEC migration was seen in L-PRF and blood clot compared with L-PRP. TGF-β1 correlated with initial platelet counts in L-PRF (Pearson r = 0.66, p = 0.0273) and initial leukocyte counts in L-PRP (Pearson r = 0.83, p = 0.0016). A positive correlation of IL-1β on migration of MSC and HUVEC was revealed (Pearson r = 0.16, p = 0.0208; Pearson r = 0.31, p < 0.001). CONCLUSIONS In comparison to L-PRP, L-PRF had higher amounts of released TGF-β1, a long-term release of growth factors, and stronger induction of cell migration. Future preclinical studies should confirm these data in a defined injury model. CLINICAL RELEVANCE By characterizing the biologic properties of different platelet concentrates in vitro, we may gain a better understanding of their clinical effects and develop guidelines for specific future applications.
Resumo:
Propionibacterium acnes is a Gram-positive commensal bacterium thought to be involved in the pathogenesis of acne vulgaris. Although the ability of P. acnes in the initiation of pro-inflammatory responses is well documented, little is known about adaptive immune responses to this bacterium. The observation that infiltrating immune cells consist mainly of CD4(+) T cells in the perifollicular space of early acne lesions suggests that helper T cells may be involved in immune responses caused by the intra-follicular colonization of P. acnes. A recent report showing that P. acnes can induce IL-17 production by T cells suggests that acne might be a T helper type 17 (Th17)-mediated disease. In line with this, we show in this work that, in addition to IL-17A, both Th1 and Th17 effector cytokines, transcription factors, and chemokine receptors are strongly upregulated in acne lesions. Furthermore, we found that, in addition to Th17, P. acnes can promote mixed Th17/Th1 responses by inducing the concomitant secretion of IL-17A and IFN-γ from specific CD4(+) T cells in vitro. Finally, we show that both P. acnes-specific Th17 and Th17/Th1 cells can be found in the peripheral blood of patients suffering from acne and, at lower frequencies, in healthy individuals. We therefore identified P. acnes-responding Th17/Th1 cells as, to our knowledge, a previously unreported CD4(+) subpopulation involved in inflammatory acne.
Resumo:
OBJECTIVE Telomere length is a marker of biological aging that has been linked to cardiovascular disease risk. The black South African population is witnessing a tremendous increase in the prevalence of cardiovascular disease, part of which might be explained through urbanization. We compared telomere length between black South Africans and white South Africans and examined which biological and psychosocial variables played a role in ethnic difference in telomere length. METHODS We measured leukocyte telomere length in 161 black South African teachers and 180 white South African teachers aged 23 to 66 years without a history of atherothrombotic vascular disease. Age, sex, years having lived in the area, human immunodeficiency virus (HIV) infection, hypertension, body mass index, dyslipidemia, hemoglobin A1c, C-reactive protein, smoking, physical activity, alcohol abuse, depressive symptoms, psychological distress, and work stress were considered as covariates. RESULTS Black participants had shorter (median, interquartile range) relative telomere length (0.79, 0.70-0.95) than did white participants (1.06, 0.87-1.21; p < .001), and this difference changed very little after adjusting for covariates. In fully adjusted models, age (p < .001), male sex (p = .011), and HIV positive status (p = .023) were associated with shorter telomere length. Ethnicity did not significantly interact with any covariates in determining telomere length, including psychosocial characteristics. CONCLUSIONS Black South Africans showed markedly shorter telomeres than did white South African counterparts. Age, male sex, and HIV status were associated with shorter telomere length. No interactions between ethnicity and biomedical or psychosocial factors were found. Ethnic difference in telomere length might primarily be explained by genetic factors.
Resumo:
Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro inflammation: A common denominator for stroke, multiple sclerosis and Alzheimer's disease, guest edited by Helga de Vries and Markus Swaninger.
Resumo:
BACKGROUND Cell-derived plasma microparticles (<1.5 μm) originating from various cell types have the potential to regulate thrombogenesis and inflammatory responses. The aim of this study was to test the hypothesis that microparticles generated during hepatic surgery co-regulate postoperative procoagulant and proinflammatory events. METHODS In 30 patients undergoing liver resection, plasma microparticles were isolated, quantitated, and characterized as endothelial (CD31+, CD41-), platelet (CD41+), or leukocyte (CD11b+) origin by flow cytometry and their procoagulant and proinflammatory activity was measured by immunoassays. RESULTS During liver resection, the total numbers of microparticles increased with significantly more Annexin V-positive, endothelial and platelet-derived microparticles following extended hepatectomy compared to standard and minor liver resections. After liver resection, microparticle tissue factor and procoagulant activity increased along with overall coagulation as assessed by thrombelastography. Levels of leukocyte-derived microparticles specifically increased in patients with systemic inflammation as assessed by C-reactive protein but are independent of the extent of liver resection. CONCLUSIONS Endothelial and platelet-derived microparticles are specifically elevated during liver resection, accompanied by increased procoagulant activity. Leukocyte-derived microparticles are a potential marker for systemic inflammation. Plasma microparticles may represent a specific response to surgical stress and may be an important mediator of postoperative coagulation and inflammation.
Resumo:
Background: Tumor infiltrating T-lymphocytes (TILs) have been shown to play an important prognostic role in many carcinomas. The identification of prognostic relevant morphological or molecular factors is a major area of interest in the diagnostic process and for the treatment of highly aggressive esophageal adenocarcinoma. Studies about the impact of TILs in this tumor have not shown completely congruent results yet. We present a comprehensive study about the clinical and pathological impact of TIL in esophageal adenocarcinomas. Methods: A next generation tissue microarray (TMA) of 117 primary resected esophageal adenocarcinomas was analyzed for CD3+, CD8+ and FoxP3+ TIL using immunohistochemistry. The TMA contained three cores of the tumor center and the tumor periphery per each case. Slides were scanned with a high-resolution scanner (ScanScope CS; Aperio) and an image analysis software (Aperio Image Scope) was used to determine the TIL counts. The results were correlated with clinicopathological parameters. Results: CD3+, CD8+ and FoxP3+ TIL counts showed a significant correlation among each other (p<0.001 each, range: 0.27-0.77). TIL counts were categorized as high and low levels, according to the median. Tumors with high FoxP3+ intratumoral lymphocyte counts were more frequently of lower pT category (p<0.001) and without lymph node metastasis (p=0.04). High levels of FoxP3+ lymphocytes in the tumor center and the periphery were also associated with better prognosis (p<0.001 and p=0.041, respectively) in univariate analysis. A similar prognostic impact was seen for high levels of CD3+ and CD8+ TIL in the tumor center, but not in the periphery (p=0.047 and p=0.011, respectively). In multivariate analysis high central FoxP3+TIL levels were an independent prognostic factor (HR=0.4; p=0.023) which was similar to a combination score of CD3+/CD8+/FoxP3+ TIL (HR=0.54; p=0.027) or CD8+/Foxp3+ TIL (HR=0.052; p=0.020) and superior to pT- and pN category (p>0.05 each). Conclusion: This study demonstrates a significant beneficial prognostic impact of high TIL counts in the tumor center of esophageal adenocarcinomas, in particular with regards to the subpopulation of FoxP3+ and CD8+ T-regulatory cells. The determination of intratumoral lymphocytic counts and application of TIL scores can improve prognostic accuracy of pathologic reports of these tumors and may be helpful for better risk stratification of esophageal adenocarcinoma patients.
Resumo:
Myocardial infarction (MI) leads to a severe loss of cardiomyocytes, which in mammals are replaced by scar tissue. Epicardial derived cells (EPDCs) have been reported to differentiate into cardiomyocytes during development, and proposed to have cardiomyogenic potential in the adult heart. However, mouse MI models reveal little if any contribution of EPDCs to myocardium. In contrast to adult mammals, teleosts possess a high myocardial regenerative capacity. To test if this advantage relates to the properties of their epicardium, we studied the fate of EPDCs in cryoinjured zebrafish hearts. To avoid the limitations of genetic labelling, which might trace only a subpopulation of EPDCs, we used cell transplantation to track all EPDCs during regeneration. EPDCs migrated to the injured myocardium, where they differentiated into myofibroblasts and perivascular fibroblasts. However, we did not detect any differentiation of EPDCs nor any other non-cardiomyocyte population into cardiomyocytes, even in a context of impaired cardiomyocyte proliferation. Our results support a model in which the epicardium promotes myocardial regeneration by forming a cellular scaffold, and suggests that it might induce cardiomyocyte proliferation and contribute to neoangiogenesis in a paracrine manner.
Resumo:
Telomere attrition has been linked to accelerate vascular ageing and seems to predispose for vascular disease. Our aim was to study the telomere length dynamics over time and in subsets of leukocytes from 15 patients with peripheral arterial disease (PAD). The mean telomere length in subsets of leukocytes of patients with PAD was in the normal range of age-related telomere length values from healthy individuals. However, we found significant higher telomere attrition for T-cells from patients with PAD over a time period of six months when compared to the controls. The higher telomere loss in T-cells of patients with PAD most likely reflects a higher cell turnover of this leukocyte subset, which is involved in the process of chronic inflammatory disease underlying vascular disease. Further studies are needed to confirm these data and to assess how far this T-cell telomere attrition will correlate to the extent of the disease.
Resumo:
Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions.
Resumo:
OBJECTIVE To investigate the regulatory effect of tumour necrosis factor (TNF) blockade with infliximab on the distribution of peripheral blood monocyte subpopulations in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). METHODS Purified CD11b+CD14+ monocytes from 5 patients with RA and 5 AS were analysed ex vivo before and after infliximab treatment by flow cytometry for CD16, CD163, CD11b, C-C chemokine receptor type 2 (CCR2) and CXC chemokine receptor 4 (CXCR4) at baseline and at days 2, 14, 84 and 168 after the first infliximab administration. Serum levels of the stromal cell-derived factor (SDF)-1 and monocyte chemotactic peptide (MCP)-1 at different time points were measured in either patient group before and on infliximab treatment. RESULTS Anti-TNF treatment with infliximab led to a significant increase of circulating CD11b+ non-classical and a concomitantly decrease of CD11b+ classical monocytes, to a decline in SDF-1 levels and reduced expression of CCR2 and CXCR4 on non-classical monocyte subpopulation. CONCLUSIONS Our study shows, that TNFα blockade by infliximab resulted in a dichotomy of the regulation of classical and non-classical monocytes that might have substantial impact on inhibition of osteoclastogenesis and of subsequent juxta-articular bone destruction and systemic bone loss in RA and AS.